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Abstract. We consider a one-dimensional lattice model with the nearest-neighbour interaction
V1 and the next-nearest-neighbour interactionV2 with filling factor 1/2 at zero temperature.
The particles are assumed to be spinless fermions or hard-core bosons. Using very simple
assumptions we are able to predict the basic structure of the insulator–metal phase diagram
for this model. Computations of the flux sensitivity support the main features of the proposed
diagram and show that the system maintains metallic properties at arbitrarily large values ofV1

andV2 along the lineV1 − 2V2 = γ J , whereJ is the hopping amplitude, andγ ≈ 1.2. We
think that close to this line the system is a ‘weak’ metal in the sense that the flux sensitivity
decreases with the size of the system not exponentially but as 1/Lα with α > 1.

The interest of the theory of one-dimensional systems is only partially related to the study
of organic conductors and other quasi-1D compounds. Another source of interest in the 1D
physics is the variety of problems which are either exactly soluble [1] or more amenable to
a computational approach. Their solutions give guidance to intuition which can be applied
to problems in higher dimensions.

We consider a 1D system on a lattice with the following Hamiltonian:

H = J
∑
j

(a
†
j aj+1+ HC)+

∑
i 6=j

V|i−j |ninj . (1)

We study only the filling factorν = 1/2. In the case of the Coulomb potential
V|i−j | = 1/|i − j | one should maintain neutrality and make the changeni → ni − ν.

We consider the spinless fermion system atT = 0. One can show that for an odd
number of electronsN the Hamiltonian coincides with that for hard-core bosons. For even
N the fermion–boson transformation requires the change of periodic boundary conditions
into antiperiodic ones. The particle–hole symmetry can be shown to require that for even
N at ν = 1/2 the states with total quasimomentaP, π −P,−P , andP −π are degenerate.

The system under study undergoes structural and insulator–metal (IM) phase transitions
when the hopping amplitudeJ is varied. The general point of view is that at smallJ the
ground state has a crystalline order and is insulating. In the free-fermion limit of largeJ

the system does not have long-range order and is metallic.
In the case of nearest-neighbour interaction, and only then, the problem is exactly soluble

[2–4]. In this case the structural transition occurs simultaneously with the IM transition [4].
In principle, two separate transitions are not forbidden. Nevertheless, in the qualitative
arguments below we assume that these transitions are connected to each other and occur at
the sameJc.
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We concentrate here on the IM transition in a model with nearest-neighbour and next-
nearest-neighbour interactions, the so-called [V1, V2] model. It has been studied [5] in
connection with the spin version of the Hamiltonian, equation (1). The IM phase diagram
for this model has been studied recently in reference [6].

We detect the IM transition by analysing the flux sensitivity [7, 8]δE = |Ep−Ea|, where
Ep andEa are the ground-state energies for periodic and antiperiodic boundary conditions.
For simplicity, we takeEa to be the lowest-energy state with the same quasimomentumP

asEp.
Starting from the ordered phase atJ = 0 and using perturbation theory with respect to

J , one can show thatδE ∼ JN at smallJ and hence falls off exponentially with the system
sizeL = 2N . For free fermions,δE = πJ/L. Thus, the dependence of the productLδE

onL andJ is a nice criterion for detection of the IM transition. We obtain this dependence
by the exact-diagonalization technique.

The idea that we want to check here is that the IM transition is closely related to the
point defect with the lowest energy in the crystalline phase. At finiteJ the point defect
forms a band. The transition occurs at suchJ that the lowest edge of the band comes
close to the energy of the ground state [9]. At this point the ground state becomes a strong
mixture of the crystalline and defect states. This mechanism reminds us of the idea of
zero-point defectons proposed by Andreev and Lifshitz [10].

Such a simple picture of the transition implies that the critical value ofJ is determined by
the energyEd of the defect atJ = 0. The empirical rule that we propose isJc = βEd , where
β is some number. For the exactly soluble problem with nearest-neighbour interaction,
β = 0.5. For the Coulomb problem,Ed = 2 ln 2−1= 0.386. Our computations [11] show
that for the Coulomb interactionJc is between 0.17 and 0.3, which gives 0.44< β < 0.77.
In the 2D case we have found thatβ is approximately in the same interval.

Using the empirical relation

Jc = 0.5Ed (2)

we can construct the IM phase diagram for the [V1, V2] model (see figure 1). Note that the
explicit value ofβ is not important for the qualitative results. We chooseβ = 0.5 to get
the correct value ofJc for the case whereV2 = 0, where it is known exactly. We show
below that this is the right choice for a wide range ofV1 andV2.

Two competing crystalline structures exist in the [V1, V2] model atJ = 0. The structure
1 is •◦• ◦, where• stands for an occupied site and◦ stands for an empty site. The structure
2 is • • ◦ ◦.

Dotted lines in figure 1 indicate three regions. AtJ = 0 the structure 1 has the lowest
energy in the region I, where1 ≡ 2V2−V1 < 0. The lowest-energy defect in this structure
has energy−1 and represents a shift of an electron to the nearest site. The structure 2
is stable in the regions II and III, where1 > 0. In the region II the lowest defect has
energy1 and is also a shift of one electron. In the region III another defect ‘wins’, which
has energyV2. This defect is a ‘domain boundary’, when a portion of a crystal is shifted
one site to the right or to the left. Such a shift, in fact, produces two domain boundaries
simultaneously.

Equation (2) gives the dependenceJc(V1, V2) that is shown in figure 1 with solid
lines. These lines separate insulating and metallic phases. To obtainJc(V1, V2) one should
substitute into equation (2) the proper expression for the minimum defect energyEd(V1, V2)

at J = 0 in each of three regions as discussed above. The lower solid line shows the IM
transition associated with the crystalline structure 1. The upper solid line shows the same
transition for the structure 2. It consists of two straight lines in two different regions, II and
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Figure 1. The phase diagram of the [V1, V2] model. Solid lines show the diagram as obtained
from equation (2). The dotted lines separate regions I, II, and III. The point a is known exactly;
the points b, c, and d are checked by computations. The long-dashed lines in the main figure
and in the inset show the ‘magic’ metallic line. The short-dashed lines in the inset show
schematically the region of the normal-metallic phase whereLδE independent ofL.

III, which correspond to the different types of defect.
Figure 2 shows the results of numerical computation ofLδE/J as a function ofJ at

fixed V1 andV2 for a system of 14 electrons. The data for smaller sizes are not shown.
However, they have been used to find the critical valueJc by extrapolation to 1/L→ 0. For
(V1, V2) equal to (1, 0), (0, 1), and (1, 1), our criterion predicts the transition atJc = 0.5; for
(4, 1) it predictsJc = 1. These values are indicated by the points a, b, c, and d in figure 1,
and by arrows in figure 2. The valueJc = 0.5 is exact for the point (1, 0) [2–4]. The
results of extrapolation give predicted values for the first three points with a 15% accuracy
[12]. For the point (4, 1) we gotJc = 1.2± 0.1. Thus, we may conclude that equation (2)
works very well over a wide range ofV1 andV2.

The most important prediction of the phase diagram given as figure 1 is the existence
of a metallic region between the solid lines which extends infinitely for arbitrarily largeV1

andV2 close to the line1 = 2V2− V1 = 0. Consider the curves in figure 2 corresponding
to (V1, V2) = (1, 0.48) and (1, 0.52). Now with changingJ we are moving almost along
the line1 = 0 in figure 1. In the first case we deviate a little towards crystal 1, and in the
second case we deviate a little towards crystal 2. Both lines intersect the IM phase lines at
largeV1, V2, predictingJc = 0.02 in both cases. One can see in figure 2 that this prediction
is basically fulfilled in the sense that the exponential dependence onJ disappears near this
point. ForJ > Jc the system, however, does not look like an ordinary metal, whereLδE

should be size independent. In fact, we have observed a weak dependence ofLδE on L
over a wide range ofJ betweenJ = Jc andJ ≈ 0.4.

Figure 2 also showsδE for (V1, V2) = (1, 0.50). Now with decreasingJ we are moving
exactly along the line1 = 0. In this case the exponential transition to the dielectric phase
is absent for arbitrarily smallJ , in agreement with our phase diagram, figure 1. However,
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Figure 2. The dependence of the flux sensitivity in units ofJ/L on J for different (V1, V2)

for the system with 14 electrons as obtained by exact diagonalization. The arrows show the
transition points predicted by the phase diagram. The dashed line shows the free-fermion result
LδE/J = π .

there is some size dependence ofLδE along the line1 = 0 in the regionJ � 1. It can
be described asδE ∼ 1/Lα with α > 1. Thus, this is not a case of a normal 1D metal
whereα = 1. An alternative interpretation of the same data would be an exponential size
dependence,δE ∝ exp(−L/ξ), with an anomalously large correlation lengthξ .

Now we study more carefully the immediate vicinity of the line1 = 0 far from the
origin. In the region1 � V1, V2, the spectrum of energies atJ = 0 has two scales. The
large scale is determined byV1 andV2, while the second scale is|1|, which is the energy
necessary to produce a defect. When1 = J = 0, the ground state is macroscopically
degenerate.

To separate these two scales we consider a limitV1, V2→∞, J and1 being finite. In
this limit the size of the Hilbert space can be greatly reduced. Only the states which are
degenerate at1 = J = 0 should be taken into account. These states are such that neither
three electrons nor three holes occupy adjacent sites.

The reduction of the Hilbert space size is fromCL/2L to approximatelyfL−2, where the



Letter to the Editor L565

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

  /2J

E/JN,

(L
/J

) 
  E

12

40
...

16

8L =

0 0.1
0

1

2

1/L

G
ap

L = 40

Figure 3. The flux sensitivityLδE/J for differentL and the ground-state energyE per particle
for L = 40 as functions of1/2J . The energyE is measured from the classical energy of the
crystalline structure 2. The inset shows the excitation gap along the magic metallic line versus
1/L. All of the results are obtained by exact diagonalization in the limitV1, V2→∞.

fn denote the Fibonacci numbers, defined byfn = fn−1 + fn−2, f0 = f1 = 1. At largen
one has [13]fn ≈ ((1+

√
5)/2)n+1/

√
5.

With this reduction we can increaseL up to 40(f38 = 0.63× 108). Figure 3 shows
LδE/J as a function of1/2J obtained for differentL. The maximum occurs not at1 = 0,
as could be expected from naive consideration, but at1/2J ≈ −0.6. The accurate size
extrapolation shown in figure 4 demonstrates that at this pointδE L/J stays finite asL
goes to infinity. Thus, the system at1 ≈ 1.2J is a normal metal. The flux sensitivity in
the limit L→∞ is less than the valueπ for free fermions and is equal toLδE/J ≈ 2.5.
In the phase diagram, figure 1, the ‘magic’ metallic line1 = 1.2J is shown as a dashed
line. This line appears, obviously, as a result of a quantum mixture of the two differently
ordered phases.

Figure 3 shows also the energy per particle as a function of1/2J obtained in the same
limit. We have not found any singularity in the energy in the region of interest. The gap
between the ground and the lowest excited states with the same total quasimomentum at the
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Figure 4. The size dependence of the flux sensitivity for different values of1/2J in the limit
V1, V2 → ∞. The inset shows the slope 1/ξ as obtained from this size dependence at large
L versus1/2J . The slope 1/ξ can be considered as the reciprocal correlation length when
ξ < L ∼ 40.

magic metallic line scales to zero linearly in 1/L, as shown in the inset to figure 3. Note
that usually a crystalline phase on the lattice has a finite gap.

The inset in figure 4 shows the reciprocal correlation length 1/ξ = −d ln(L δE)/dL
as a function of1/2J as obtained from the slopes of the curves in figure 4 at the largest
L. Note that the conditionξ < L corresponds to 1/ξ > 0.25. Thus, we have a real
exponential behaviour for−3< 1/2J < 2. At large negative values of1/2J , the ground
state of the system is the crystal with the structure 2 with a small admixture of defects
which are fragments of the structure 1. At large and positive1/2J , one has the opposite
picture. In the intermediate region, the ground state is a mixture of these two structures.
If we extrapolate 1/ξ in each of the exponential regions, we find that it becomes zero
approximately at the boundaries of the metallic strip, shown by two parallel solid lines in
figure 1. This is natural, since the naive picture which leads to figure 1 does not take into
account mixing of two crystalline structures.

The small value ofξ in the intermediate region suggests that the size dependence of
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LδE is not exponential near the magic line. This would imply the existence of another
phase, which may be named a ‘weak metal’. If such a phase exists, there should be phase
lines which separate the weak metal from the normal metal, whereLδE is size independent.
The inset in figure 1 shows schematically the region of the normal-metallic phase. This
diagram is similar to the one obtained in reference [6], except that it predicts an infinite
metallic line in the plane(V1, V2).

Finally, we have shown that a simple rule, equation (2), provides a reasonable description
of the phase diagram of the IM transition in the [V1, V2] model. We have found an interesting
metallic phase which exists at any small value ofJ . The ground state of this phase is a
mixture of two crystalline phases with moving boundaries. The nature of a small deviation
of the metallic phase from the line1 = 0 is not clear.

We are grateful to John Worlock for reading the manuscript. We acknowledge the support
of UCSB, subcontract KK3017 of QUEST, and the support of the San Diego Supercomputer
Center.
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