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Structural and insulator-metal quantum phase transitions on a lattice
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We consider a two-dimensional gas of spinless fermions with Coulomb and short-range interactions on a
square lattice aT =0. Using the exact-diagonalization technique we study finite clusters up to 16 particles at
filling factors v=1/2 and 1/6. By increasing the hopping amplitude we obtain the low-energy spectrum of the
system in a wide range from the classical Wigner crystal to an almost free gas of fermions. Particular effort is
made to study the mechanism of the structural and insulator-metal transitions. We show that both transitions
are determined by the energy band of the defect with the lowest energy in the Wigner crystal.
[S0163-182608)08008-4

l. INTRODUCTION the same point as the structural transitton.
Very few works exist on the extended Hubbard model for

The insulator-metal(IM) transition and the role of 2D fermions. Pikus and EfréShave performed a computer
electron-electron interaction in this transition is a problem ofmodeling for 2D spinless fermions with Coulomb interaction
permanent interest, both theoretical and experimental. It ha@" a square lattice at filling factors=1/3 and 1/6. They
been showt? that in the systems with strong disorder the argue that the lifting of the ground-state degeneracy with
interaction is in favor of delocalization because electrondncreasing] is a very good diagnostic of the structural phase
may help each other to overcome the random potential. l¥ansition. They have also found a similarity between the
clean systems the role of the interaction is opposite. It mapystems of spinless fermions and hard-core bosons near the
create the so-called correlated insulator in a system thdtansition.
would be metallic otherwise. The Wigner crysta/C) is a In this paper we study structural and IM transitions for
good example of such an insulator. spinless fermions at=1/2 and 1/6. To detect these transi-

The WC in continuum is not an insulator itself, since it ions we use the ground-state spliting and the flux
can move as a whole and carry current. However, due t§ensitivity;>*° respectively. The purpose of the work is to
shear modulus it can be pinned by a small disorder. Théake advantage of the exact diagonalization technique and to
ground-state energy of the continuum WC and its zerostudy the modification of the low-energy part of the spectrum
temperature melting were widely studied in recent years botin a wide interval of the hopping amplitude all the way
with and without magnetic fiell. from the classical WC to the free fermion limit.

In contrast to the continuum case, the WC on a lattice can Our results for long-range and short-range interactions
be an insulator without any disorder due to the Umklappsuggest a simple picture of the transition. The transition is
processes in a host lattice. The WC on a lattice does not havelated mainly to the modification of the two lowest branches
any sound or soft plasma modes and its excitation spectru®f the energy spectrum. At small these two branches are
has a gap. the WC state and the energy band of the defect with the

The great majority of the efforts made recently to studylowest energy.
correlated particles on a lattice were restricted to the Hub- The paper is organized as follows. In Sec. Il we describe
bard model or the-J model (see review Ref. 5 The so- our numerical technique and present some general results.
called extended Hubbard model with short-range and longSection Il contains the results of computations and their
range interactions has been mostly considered for bosons fliscussion. We suggest the mechanism of the transition, ana-
connection to the insulator-superconductor transitionin  lyze the role of the size effect in finite-cluster computations,
these papers supersolid and superfluid phases have beand discuss the possibility that the delocalized phase above
found. The bosons with infinite on-site repulsion are calledthe IM transition is superconducting. To better illustrate the
hard-core bosons. In the case of the nearest-neighbor intemechanism of the transition we present the dependence of
action the hard-core boson problem maps into an Isingthe total energy on the quasimomentuBy(P), for a 1D
Heisenberg spin Hamiltonian. system with 1v interaction.

Spinless fermions are similar to the hard-core bosons. In
both systems the number of particles on a site is either zero 1I. COMPUTATIONAL APPROACH AND GENERAL
or one. In the one-dimensionélD) case these two systems REMARKS
are equivalent if the interaction between particles does not . i )
permit them to penetrate through one anotfer. We con5|_der spinless ferml_ons B0 on the_ 2D_ square

The 1D problem with the nearest-neighbor interaction af@ttice described by the following model Hamiltonian:
half filling is exactly solublél~*3 This instructive solution 1
shows that the transition is not of the first order and that the  H=3>, al, a.expi ps) + => nnaV(r=r']). (@

IM transition, as detected by the stiffness constant, appears at r.s 25
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(a)

E =-16.5474 1’ E=-16.1031 2' E=-161026 3 E=-16.0889 4’ E=-159715 5‘ \PQP:LE eXF(i Pr)Tr\Ifa ] (2)
| +_° [ N
The summation is performed ovaer, translationsT,. This
® o o P Py Py PO transformation reduces the effective Hilbert space size by
approximatelyM times.
. l ‘ For the icons with periodic structures the numbey of
different functions¥ . is smaller tharM. For example, the
(b) icon ¥, of the WC with one electron per primitive cell gen-
E=-4648924 1 E=-4604080 2 E=-4604078 3 E= -4.595437 4 E =-4.595436 5 eratGSﬂO: 1/1/ different Va|ues OP. These Values are deter-
l l l i_ + i mined by the conditions
(—1)%exp(iPlj)=1. (3
® oo *— 00— ®
Herel; are the primitive vectors of the WC, arfg, are
® T ° T T the numbers of fermionic permutations necessary for trans-
lations on these vectors. These conditions can be easily un-
© derstood. If translation on a vectyris applied to Eq.(2),
E=-475547 1 E=-471853 2 E=-471163 3 E=-467469 4 FE=-465674 5 the right'hand Side acquires a faCtOf‘:(_)QJ', Wh||e for a
function with givenP this factor must be equal to expy;).
If Q; are even for botly , the allowedP form the reciprocal
lattice of the WC. However, in the case when one or both of

Q; are odd, the lattice is shifted by in the corresponding
FIG. 1. Five icons with the lowest energies f@ »=1/2, LR  directions. In such case=0 is forbidden. The complete set

interaction,(b) »=1/2, SR interaction, antt) »=1/6 LR interac-  Of m, nontrivial values ofP can be obtained by restrictirig)
tion. to the first Brillouin zone of the background lattice. One WC
is represented by a number of icons obtained from each other
4 L by the point-group transformations of the background lattice.
) He_ren,—?, 3, the summation is performed_over the lat- Note that the total number of allowed valuesFofor the
tice sitesr,r’ and over the vectors of translatiossto the  \yc js the property of the WC and it remains finite at infinite
nearest-neighbor sites. We consider long-rafige) Cou-  cyster size. On the contrary, an icon representing a point
lomb potential V(r)=1/ and short-range(SR) strongly  defect in a WC generates all vect®sTheir total number is
screened Coulomb potentidV(r)=exp(-r/rg/r with rs  equal to the volumeVl of the first Brillouin zone of the
=0.25 in the units of lattice constant. We study rectangulabackground lattice.
clustersL, <L, with the periodic boundary conditions. The
dimensionless vector potentigh= (¢, ,¢,) in the Hamil- B. General remarks
tonian is equivalent to the twist of the boundary conditions
by the flux®;=L;¢;, i=Xx,y. The energy spectrum is pe-
riodic in ®, and®, with the period 2r.

As a basis for computations we use many-electron wav

In the macroscopic system all the states generated by the
WC icon form the ground state degenerate at smhallhis
gegeneracy appears because the effective matrix elements
functions atJ=0 in the coordinate representatiof’ ;[irr]T?itt C?rrllgetgttatlrz?z?gtida\s/vgzjr?gﬁoﬁeg? &E;Qi;?rgg;?;%omc
_N 4t : : .

_H‘=1ari|VAC>' The total size of the Hilbert spacgﬂﬁd ’ has identical minima at af generated by the WC icons. The
where M=L, XL, is the area of a system, arl is the  gpecira of excitations in the vicinity of these minima are also
number of particles. identical.

The basic functionsV, can be visualized as pictures,  The charge density for the state with given quasimomen-
w_h|ch we callicons Some onvestjenergy icons are shown inym p [see Eq(2)] is always the same at all sites of the host
Fig. 1. The energy of each icon is calculated as a Madelungygtice. However, at small the correlation function indicates
sum, assuming that the icon is repeated periodically over thg |ong-range order. Any small perturbation, that violates
infinite plane with a compensating homogeneous backansiational invariance splits the degeneracy in such a way
ground. _ _ that the ground state describes a single WC with a strong

The icon with the lowest energy is a fragment of the crys-mqadulation of the charge density.
tal. The icqns with higher energies represent different types The lifting of the ground-state degeneracy at some critical
of defects in the WC. value J,, indicates a structural phase transition and restora-

tion of the host lattice symmetry.
, , The flux sensitivity of a macroscopic system is zero at
A. Quasimomentum representation small J. It becomes nonzero at some finite valueJothat

The Hamiltonian Eq(1) is translationally invariant. For might be different fromJ.. We associate this transition with
each iconx there arem, different icons that can be obtained the IM transition™
from it by various translations. These icons are combined to For the finite system the following results can be obtained
get the wave function with total quasimomentiin directly using the perturbation theory with respectito
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(i) The ground state and the lowest excited states have ¢ 1.2 : .
large common negative shift that is proportionalifoand to @

0,0
the total number of particled. This shift is the same for all fl §:§
low-lying states and does not affect the excitation spectrum 1T 10
of the system. 115

(i) At v=1/2 the splitting of the ground state appears in e 22
the Nth order and is proportional t&". At other filling fac- 0.8 Lo éé

tors the degeneracy of the ground statd=a0 is larger than
two. The splitting is determined by matrix elements, which
are proportional ta¥. For each matrix element the value of 0.6
K is equal to the number of hops necessary to obtain onelU
crystalline structure from another and is proportionaNto

(iii) The flux dependence of the ground state for the flux g4
in the x direction appears in the,th order and is propor-

tional to J-x in the 2D case. In 1D the flux dependence ap- 03 T T
pears in theNth order and is proportional ta\. 02k i

Thus, we conclude that both the lifting of the ground-state
degeneracy and the appearance of the flux sensitivity occur ~ 0-1f 20|
very sharply and they can be used as convenient criteria for Y I — T T T ]
the structural and the IM transitions, respectively. Note that ©9
the correlation function is a less sensitive criterion for small -0.1 : ' ' : ' : '
clusterd*!8 since it does not exhibit sharp behavior in the 0 01 0.2 03 04 0.5
transition region. J

0.12 .
- (b)
lll. RESULTS OF COMPUTATIONS AND DISCUSSION R M————— I %
A. Results of computations 0.1F

NN A=—a—a 0000

Figures 2Za) and 2Zb) show the results of diagonalization 0.09F
for cluster 4< 6 with 12 electrons for the LRa) and SR(b) i
interactions. The total enerdy is shown as a function of. 0.08¢
The ground-state energy is taken as a reference poir .for 0.07
Here and below, the unit of energy is the LR interaction -
energy between nearest neighbors.JAtO the values ot 0.06
coincide with the energies of the icons shown in Fig. 1. We "“005'
define A as the gap between the ground and first excited '
states at}=0. Note thatA in the LR case is almost exactly 0.04
10 times larger than in the SR cqdsee Figs. (a) and Xb)].

LhLo Lhoo BR=E A

0.03

At large J the energyE is linear in J. Thus, we can | :
conclude that with increasing in this interval we go all the 0.021 T _
way from classical icons to free fermions. The ground state :
is almost degenerate at smdlland it splits into two states 0.011 1
with increasingJ. As we have discussed above, this is a I 29

. . . . (0] EE——————— -
manifestation of the structural transition. The quasimomenta ©.3)

of these two statef}=(0,7r) and (7,0), are those generated -0.01 : : . .

by the WC icon. In Figs. @) and Zb) they are denoted as 0.01 0.02 0.03 0.04 0.05
(0,39 and (2,0, where f,,n,) stands for quasimomentum J

with projectionsP,=2mn,/L,, Py=2mn,/L,. The other
branches are the bands of defects.

FIG. 2. Low-energy part of the spectrum as a functior dbr

. . _ the 4x 6 cluster atr=1/2 for LR (a) and SR(b) interactions. The
Figures 3a) and 3b) show flux sensitivity5E = |E() numbers (,,n,) denote the components of quasimomentém

—E(0), computed for the ground state for two directions °f=(2wnX/Lx,2¢rny/Ly). The ground-state energy is taken as a ref-
the vector potential. Her(®) stands for the total energy as grence point.

a function of @, or ®,. In accordance with perturbation

theory (see Sec. Il B the flux sensitivity at small obeys At large J the flux sensitivity is linear i and coincides

the lawsJ* and J® for the direction of the vector potential with the free-fermion value. Note that for free fermions at
along the short and long sides of the cluster, respectivelyy=1/2 the flux sensitivitySE is size independent for large
The energy splitting between the lowest states with clusters'’

=(0,7) and (,0) is also shown. At small the splitting is The intervals §J where computational curves fofE
proportional toJ*? (12 is the number of particlgsas it fol-  make a crossover from one asymptotic to another are pretty
lows from the perturbation theory. narrow. In what follows we assume that these are the critical
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10? ———— - - mately 0.15—0.25 for the LR interaction and 0.015—0.025

@ for the SR interaction in the 46 cluster.

100 E s s a5 ax6 0= (0m) E The behavior of the ground-state splitti(@S9 at largeJ
10° [ vvv-v 4x6, &= m0) ; ] is more complicated. In the free-fermion approximation the

: : E GSS is zero. Considering interaction as perturbation one can

10"E : a&?“ﬁ EED 3 show that in the 44 cluster the GSS-0 asJ—<=. In the
;oW [ele) 5 . .

A o A%&WOGS splitting 4x6 cluster the GSS-5.76x10"> for the SR interaction
10°F RS = 3 and the GSS~0.14 for the LR interaction a3—. These
10319 " AOO i analytical calculations are in good agreement with the com-

: S E putational results at largé given in Figs. 8a) and 3b). In

Ly 10*f v 4 £ . the case of SR interaction the GSS curve has a maximum. It
“© ¥ B ] is reasonable to assume that the crossover from the WC to
107 ¢ v # | | E free fermions occurs in the vicinity of this maximum. There

108k ® ] is no maximum in the case of LR interaction and the cross-

: v Y E over region can be estimated using the sharp maximum of
107 ¢ 3 the second derivative.

af » oo We conclude that within the accuracy of our computa-
107 Q‘? Yo W 3 tions, limited by the finite cluster sizes, the IM transition
16°L N Q‘\? é\? ] detected by the flux sensitivity and structural transition de-

: N N 3 E tected by the GSS occur simultaneously.
10'¢ L < & 4 Comparison of Figs. @) and 3b) shows that the depen-

s Q. . . denciesdE(J) for the LR and SR potentials are almost in-
100_001 0.01 0.1 1 10 distinguishable if all the energy scales for one of them are

adjusted 10 times. This factor is just the ratio of zérgaps
J A for these two cases. Thus, we come to the conclusion that
10! - ) . J. depends on the type of interaction potential mostly

) ' ' ' through the value ofA. The same applies to the general
10° E o oaa 4x6, B2 (0) . structure of the low-energy spectrum of the system in the

F " transition region as can be seen from comparison of Figs.

1L v-v-v-v 4x6, =m0 : . X
107 s e ¢ =m0) szx 2(a) and 2b).
102k ) ] Figures 4a) and 4b) show the data fon=1/6 and LR

e ] interaction. Figure @) looks more complicated than Figs.
10°] J"ﬂ G.S. splittings 2(a) and 2b). The WC forvy=1/6 is shown in the first icon
154L ‘J' ¥ 2 QSXM%O-O 1 in Fig. 1(c). There are fo_ur such WCs which can be obtained

j ., Sy e %4)( 5 from each other by point-symmetry operations. Each WC

W 10%[ 4 generates six different values & Thus, at smallJ the

O o ground state of the system is 24-fold degenerate. The degen-
107 4x4 3 eracy is high, however, it remains the same in the infinitely
107k ] large cluster.

i E The primitive vectors of the WC at=1/6 cannot be
10° 3 obtained from each other by any symmetry operation on
109 ] the host lattice. This means that the WC phase belongs to

E a reducible representation of the symmetry group of the
10" ¥ y host lattice. Following Landau and Lifshit2 the symmetry

11 N reduction in the second-order phase transition should be such
10 3 3 that the low-symmetry phase belongs to an irreducible rep-
101 el resentation of the symmetry group of the high-symmetry

0.0001 0.1

J

phase. We conclude that the single second-order phase tran-
sition is forbidden in this case. However, it can occur as a
series of transitions, each reducing the symmetry one step

FIG. 3. Flux sensitivity for two directions of vector potential
and the ground-state splitting as a functionJoét »=1/2. (a) LR
interaction for a cluster % 6. (b) SR interaction for 44, 4X6,
and 4x8 clusters. Dashed lines show largeand smalld
asymptotic as obtained by the best fit with correct powerd. Ghe
vertical bars show the critical region of the transition.

further. In fact, Fig. 4a) recalls the picture of multiple tran-
sitions. We think that each splitting of the energy levels gen-
erated by the WC icon manifests a structural transition. The
6X6 cluster is too small to distinguish the critical intervals
for each of these transitions. We can only conclude from
Figs. 4a) and 4b) that the critical interval5J for all of the
intervals for the IM transition, smeared in a finite cluster.Structural transitions and IM transition is 0.01—0.03. This
These critical intervals can be fairly well defined for eachinterval is shown by vertical bars in Fig(h).
cluster and should shrink into a transition point with increas-
ing cluster size.

The vertical bars in Figs.(d8) and 3b) show the estimated
critical interval 4J for the IM transition, which is approxi-

B. The mechanism of transition

Our data suggest the following mechanism of the transi-
tion. The width of the band of the lowest defect in the WC
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0.09
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0.08
0.07F N @O waeed g ud 4 SEs 4
- 0.08F T
0.06
0.05
(]
D 004f iR Tg 0.06
@ Toi‘; R A )
+ 0,03 {19 @I T w
+ 002t ©
w 0.04
0.01F
0 -_(0,3), (1), (_1*2);(3:3}, o
L s S T s, P =(0,0), (0,2), {1,1), (2,2)
-0.01 0.02 . Oo ,,,,,,,
t » Q
-0.02 s we — o
@2
0.03 505 0 . . . -
0 0.01 0.02 0.03 0.04
0
) ' J
| / FIG. 5. The same as Fig(l® for the 4<x4 and 4x 8 clusters.
1L e P=(03), 2= (0m) /! o3 The data for the X8 cluster is presented fé?=(0,0) (dots and
[ vv vy P=(03),9=(m0) £57, P=(mr,7) (circles only.
s 4 ¢ o P=(1,1),d=(mtn) o
10° /,/// ; ] One can interpret the avoided crossing in terms of the
i //// /ff o ground state, which acquires a large admixture of defect
10% 1d /A S . states. This interpretation recalls the idea of zero-point de-
w AT fectons proposed by Andreev and Lifshifz.
<1 / LI In principle, one can imagine that the state with a quasi-
107 F Soa, E momentunmP different from those generated by the WC icon
I £y ' becomes the ground state via a branch crossing. However, in
10% / ’ . all cases we have considered, we observe the avoided cross-
: . / S 7 ing between the crystalline state and the state in the defect
108 L & VAR ] band with the samé. Assuming that this is the case for
§ / , larger clusters, we conclude that the phase transition is not of
oc)\,\ VAR ’ ’ the first order.
107 F & /’ 9 The proposed mechanism of the transition can be illus-
J trated by the dependen&g P) at givenJ. Unfortunately, in
10° ‘ v o ‘ o the 2D case the number of discreet value® along any line
0.001 0.01 0.1 in the first Brillouin zone is small even for the largest 2D

system we study. To clarify our understanding of the transi-
FIG. 4. Results for=1/6, 6x6 cluster.(a) Low-energy part  tion it is instructive to analyze the data for 1D systems.
of the spectrum(b) flux sensitivity for differentP and two direc- We have considered 1D systems with the nearest- and
tions of vector potential. The numbens,(n,) denote the values of next-nearest-neighbor interactfdrand the system with LR
P as in Fig. 2. The reference point is taken toAe BJ®, whereA interaction. In the latter case we study Hamiltonian @gjat
is the energy of the WC at=0, andB=177 is the exacl® term as fjlling factor »=1/2 andV(i —j)=1/i —j|. In 1D we switch
obtaln_ed from p_erturbatlon thgory. Dashed lines r_lgve the_ saMgom the homogeneous background to the chain with/2
tmhzat?;r;]g';si?;r:n Fig. 3. The vertical bars show the critical region Ofcharges for the empty and occupied sites respectively.

' Figure 6 shows the results for the flux sensitivityJ/&or
increases withl such that its lowest edge comes close to thedifferent system sizek. The sharp exponential behavior in-
energy of the ground stdfe[see Figs. @) and 2b), 4(a), dicates that the system becomes an insulator at smatis
and 5. Strong mixing between the crystalline and defectresult clearly contradicts the statement by Poilblahal 2
states with the same quasimomentum occurs at this pointhat the 1D Coulomb system is metallic at all This result
The avoided crossing appears between the ground state andntradicts the prediction by Poilblanet al?? that the
the states in the defect band. ground state of the ID Coulomb system is metallic. Note,
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10' . .
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16°%F L=8 .
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108 20 ‘ué S +0.10
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10° 0 .
L 28 1_ -
109 24 *
10" 0 T ! ]
0 0.1
o R .
0.01 0.1 1
J

FIG. 6. Flux sensitivity in unitd/L as a function ofl for the 1D
system with LR Coulomb interaction at=1/2 for different sizes..
Long-dashed line shows the theoretical valuéE/J= 7 for free

fermions. The inset shows the extrapolation tb-3/0.

TABLE |. Zero-J gapsA and estimated critical region$] for
different systems studied.

System 8J N A Jn/A

v=1/2, LR, 4X6 0.15-0.25 0.2 0.444 0.45
v=1/2, SR, 4X6 0.015-0.025 0.02  0.0448 0.44
v=1/6, LR, 6X6 0.01-0.03 0.02 0.037 0.54

tized value ofP for a cluster of 28 sites with 14 particles.
Note that the spectrum has nontrivial symmetry around the
points P= = /2. This symmetry appears for evéh at v
=1/2 as a result of the particle-hole symmetry.

For evenN the WC icon generates two states with quasi-
momentaP= = /2, which are degenerate at dll As one
can see from Fig. 7, at=0.05 these states are separated by
a gap from the continuum of states, generated by the icon of
the point defect. A=0.1 the defect band broadens and, as
a result, the gap decreases. However, the lowest eigenvalue
at P=+* 71/2 is still separated from the defect band, whereas
the second eigenvalue belongs to it. At this point an avoided
crossing starts to develop and the width of the gap remains
almost unchanged from=0.1 to J=0.2. In the latter case,
the lowest eigenvalue is no longer a separated point, but
rather can be ascribed to the band. /0.3 it becomes
quite clear that the lowest eigenvalue belongs to the con-
tinuum spectrum. Finally, the picture dt=1 is almost a
picture for free fermions with the Fermi momentupi

however, that this prediction is mostly based on computa= 7/2 and with the lowest brandh,,,,(P) close toJ|cosP)|.
tions for »=1/3, while we considep=1/2.

An extrapolation to 1/—o shown in the inset gives a critical value ofJ is determined by the energg of the
rather wide interval fod, of the IM transition between 0.17 |owest defect af=0. Our 2D results are summarized in the

and 0.3.

The proposed mechanism of the transition implies that

Table 1. It shows for comparison the middle poily of the

Figure 7 shows a few lowest eigenvalues for each quarngritical interval ) and the zera gap A for all cases we

-4 T T T T
J=0.05
tlc..“....38383...'..‘.,.3
5 583y . g88883gg . g 88+
°gggge’ 988%389010
6 | i
HEﬁﬁEDDDDDEEEEEEEEEDDDDDBEEE
8pond SocoB” 020
7 + o o 4
Weose, NELEED g4t
8 "Fgasroagit fLgpaetangat]
éAAAﬁ ﬁAAAﬁ 030
| saa aaa B
P R R =
17 F i
2 448 4
Atﬁs:::::éip““sA X As*p
20 R t 1.00
a A
23 1 1 ) L .
- —-7/2 OP /2 m

have studied. One can see that bdthand A change by a
factor of 10 depending on the filling factor and the type of
the interaction potential.

However, their ratidl,/A is almost constant and is close
to 0.5 in all cases. Since we assume thgt-J. with in-
creasing cluster size, this implies an empirical rule Ipr

J.=pA., (4)

where 8 is some number that is close to 0.5, akd is the
smallest energy necessary to create a point defect in an infi-
nitely large system.

C. Study of the size effect
1. Classical size effect

As can be expected from Table I, the eneryyof the
lowest excited state ai=0 may have much influence on
Jm. We show here thaA may have a strong size depen-
dence in small clusters. This kind of a size effect can be
called “classical.”

The SR and LR potentials are very different in this aspect.
In the case of SR interaction the defect with the lowest en-
ergy is the point defedisee Fig. 1b)]. The weak dependence

FIG. 7. The dependence of the total energy on the total quasiof A on the cluster size is only due to the interaction of the

momentum at differend for 1D system with LR Coulomb interac-

tion at v=1/2 and sizd_=28.

defect with its images, which appear as a result of the peri-
odic boundary conditions.
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1 T T ] the size effect inl,, comparing the results for different clus-

[ e 112 ] ters. The size dependence 3 for the SR potential can be

o 1 estimated from Fig. ®).

] We study only the clusters with the dimensions commen-
) ] surate with the primitive vectors of the WC. Otherwise the
periodic continuation destroys the crystalline order. kBor
N .0 =1/2 this requires that both, andL, are even. Since we

i Y sH- ] can study clusters up to 16 particles this condition restricts
0 O ] our options to &4, 4x6, and 4x 8 clusters.

O 1/4 The low-energy spectrum for thex#4 cluster is shown in

] Fig. 5. In this case the WC icon generates quasimom@nta

=(0,0) and ¢r, 7). The flux sensitivity and the ground-state

splitting are shown in Fig. ®) for all three clusters studied.

0.01¢ ] One can see that the data do not show any pronounced sys-
[ ] tematic size dependence @f,, suggesting that for the SR

potentialJ. is within the interval 0.015-0.025.

Thus, we have found that the size effect at a given value
of A is small. Assuming this result to be independent of the
S type of potential, one can suggest that for the LR interaction
0.001 : LA . - the “classical” contribution to the size effect is the major

0 10 20 30 one. Then one can use Ef4) to estimateJ, for the LR
Size L potential using the classical enerdy, . For v=1/2, say, we
getA,.=0.61(see Fig. 8 resulting inJ,~0.3. To get a re-
=0 for different filling factors as obtained by classical Monte Carlo liable estimate folr this case from the quantl.Jm computz%tlons
simulation. The saturation occurs at such size when the point defe@"® should consider at least a“_i cluster smce.the ppmt .
becomes the lowest excitation. dlefect bgcomes the lowest excited state starting with this
cluster size.

Gap A
@]

1/6

FIG. 8. Size dependence of the lowest excitation energy at

In the case of LR interaction the energy depends
strongly on the size of the cluster for relatively small clus-
ters. This dependence becomes stronger for smaller filling D. Gap at nonzeroJ

factors. One can see in Fig(dl that in the 4x6 cluster at .
v=1/2 the point defect appears only as the fifth icon.zAt Now we analyze the gap between the split ground state
— 1/6 the five lowest-energy icons shown in Figcjldo not and the excited states that belong to the defect band. This

contain a point defect at all. gap is clearly seen in Figs(&, 2(b), 4(a), apd 5_. At large]

We have studied thoroughly the low-energy spectrum fothe branches haye_ a form of beams Wlth. different slopes.
LR interaction atJ=0. The square clusters with different These slopes de_fmltely come from the confinement quantiza-
sizesL and filling factors 1/2, 1/3, 1/4, and 1/6 were ana-tion of free fermions.
lyzed using classical Monte Carlo technique. The results are The large number of states in each beam reflects high
presented in Fig. 8. At=1/3 and 1/6 new low-energy types degeneracy of the free-fermion ground statevatl/2. For
of dislocations appear with increasing the cluster size. Thesexample, in Fig. 5 all lines that are horizontal at lathare
dislocations are restricted by the periodic conditions inthe states that are degenerate for the free fermions. The split-
smaller clusters. As a resulk, decreases with size for small ting of these states is a result of interaction. The gap between
clusters. However, for large enough clusters new dislocationthe split ground state and the bunch of the states in the same
cease to appear, so thatdoes not decrease. Since the en-beam can be easily calculated in the mesoscopic region of
ergy of a dislocation is proportional to the size of the clusterjargeJ, where 472J/L?>1/L. The picture of beams is valid
the point defect should win the competition in large enoughin the same region and it does not imply the existence of a
clusters. gap at large] in a macroscopic system.

For »=1/2 and 1/3 the point defect becomes the lowest On the other hand, the gap at J=0 is the energy of
excited state starting with the sizex6 and 9<9, respec- defect and it has a nonzero limit in a macroscopic system.
tively. For v=1/4 and 1/6 we are unable to find this critical Thus, an important question arises, whether or not the gap
size. However, the increase & with L ensures that the has a nonzero limit right after the IM transition. The nonzero
point defect should eventually become the lowest excitedjap would mean that the state after the transition is super-
state. conducting.

Our conclusion is that in the case of LR interaction one We have put a lot of computational effort into answering
should expect a significant size effectdp due to the clas- this question but the results are still inconclusive. Our best
sical size effect im. achievement is shown in Fig. 5 where we compare the results
for 4x4 and 4x8 clusters. The confinement quantization
would prescribe that the gap decreases in half. We have

Since the classical size effect is negligible for the SRfound that the gap for the 48 cluster is less than for the
interaction we can analyze the “quantum” contribution to 4X 4 cluster but the ratio is significantly larger than 0.5.

2. Quantum size effect
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IV. CONCLUSIONS the critical value of] is determined by the defect with the
We have performed a numerical study of the structuraloweSt energyA atJ=0. To |IIu_strate our point the data for
he 1D system with Coulomb interaction are also presented.

and .lM phase transitions in 2D fermpmc systems WlthThe possibility of the delocalized phase above the transition
Hamiltonian Eq.(1). The structural transition has been de- A
to be superconducting is discussed.

tected by studying the splitting of the ground state, degener- We have found that the size effect is not very strong for

ate in the crystalline phase. Simultaneously we studied the . ! . ' 2
IM transitionyby comguting the sensitivity %f the ground- >¢ in the case of the SR interaction. For the LR interaction it

state energy to the boundary conditions. In the 2D case wh strong because of the size dgpendence of t.he defect energy
have studied the systems with LR and SR interactions & - We argue thata}rellable estimate Qrfrom f|n|te-cluster
different filling factors. Within the accuracy determined by computations in this case can be obtained with the use of the
the size effect the IM transition occurs simultaneously With(':"’npmc"Jll rule Eq.(4).
the structural transition. N o ACKNOWLEDGMENTS
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