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Structural and insulator-metal quantum phase transitions on a lattice

E. V. Tsiper and A. L. Efros
Department of Physics, University of Utah, Salt Lake City, Utah 84112

~Received 26 August 1997!

We consider a two-dimensional gas of spinless fermions with Coulomb and short-range interactions on a
square lattice atT50. Using the exact-diagonalization technique we study finite clusters up to 16 particles at
filling factorsn51/2 and 1/6. By increasing the hopping amplitude we obtain the low-energy spectrum of the
system in a wide range from the classical Wigner crystal to an almost free gas of fermions. Particular effort is
made to study the mechanism of the structural and insulator-metal transitions. We show that both transitions
are determined by the energy band of the defect with the lowest energy in the Wigner crystal.
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I. INTRODUCTION

The insulator-metal~IM ! transition and the role o
electron-electron interaction in this transition is a problem
permanent interest, both theoretical and experimental. It
been shown1–3 that in the systems with strong disorder t
interaction is in favor of delocalization because electro
may help each other to overcome the random potential
clean systems the role of the interaction is opposite. It m
create the so-called correlated insulator in a system
would be metallic otherwise. The Wigner crystal~WC! is a
good example of such an insulator.

The WC in continuum is not an insulator itself, since
can move as a whole and carry current. However, due
shear modulus it can be pinned by a small disorder. T
ground-state energy of the continuum WC and its ze
temperature melting were widely studied in recent years b
with and without magnetic field.4

In contrast to the continuum case, the WC on a lattice
be an insulator without any disorder due to the Umkla
processes in a host lattice. The WC on a lattice does not h
any sound or soft plasma modes and its excitation spect
has a gap.

The great majority of the efforts made recently to stu
correlated particles on a lattice were restricted to the H
bard model or thet-J model ~see review Ref. 5!. The so-
called extended Hubbard model with short-range and lo
range interactions has been mostly considered for boson
connection to the insulator-superconductor transition.6–9 In
these papers supersolid and superfluid phases have
found. The bosons with infinite on-site repulsion are cal
hard-core bosons. In the case of the nearest-neighbor i
action the hard-core boson problem maps into an Isi
Heisenberg spin Hamiltonian.

Spinless fermions are similar to the hard-core bosons
both systems the number of particles on a site is either z
or one. In the one-dimensional~1D! case these two system
are equivalent if the interaction between particles does
permit them to penetrate through one another.10

The 1D problem with the nearest-neighbor interaction
half filling is exactly soluble.11–13 This instructive solution
shows that the transition is not of the first order and that
IM transition, as detected by the stiffness constant, appea
570163-1829/98/57~12!/6949~8!/$15.00
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the same point as the structural transition.13

Very few works exist on the extended Hubbard model
2D fermions. Pikus and Efros14 have performed a compute
modeling for 2D spinless fermions with Coulomb interacti
on a square lattice at filling factorsn51/3 and 1/6. They
argue that the lifting of the ground-state degeneracy w
increasingJ is a very good diagnostic of the structural pha
transition. They have also found a similarity between t
systems of spinless fermions and hard-core bosons nea
transition.

In this paper we study structural and IM transitions f
spinless fermions atn51/2 and 1/6. To detect these trans
tions we use the ground-state splitting and the fl
sensitivity,15,16 respectively. The purpose of the work is
take advantage of the exact diagonalization technique an
study the modification of the low-energy part of the spectr
in a wide interval of the hopping amplitudeJ all the way
from the classical WC to the free fermion limit.

Our results for long-range and short-range interactio
suggest a simple picture of the transition. The transition
related mainly to the modification of the two lowest branch
of the energy spectrum. At smallJ these two branches ar
the WC state and the energy band of the defect with
lowest energy.

The paper is organized as follows. In Sec. II we descr
our numerical technique and present some general res
Section III contains the results of computations and th
discussion. We suggest the mechanism of the transition,
lyze the role of the size effect in finite-cluster computation
and discuss the possibility that the delocalized phase ab
the IM transition is superconducting. To better illustrate t
mechanism of the transition we present the dependenc
the total energy on the quasimomentum,E(P), for a 1D
system with 1/r interaction.

II. COMPUTATIONAL APPROACH AND GENERAL
REMARKS

We consider spinless fermions atT50 on the 2D square
lattice described by the following model Hamiltonian:

H5J(
r ,s

ar1s
† arexp~ i fs!1

1

2 (
rÞr8

nrnr8V~ ur2r 8u!. ~1!
6949 © 1998 The American Physical Society
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6950 57E. V. TSIPER AND A. L. EFROS
Herenr5ar
†ar , the summation is performed over the la

tice sitesr ,r 8 and over the vectors of translationss to the
nearest-neighbor sites. We consider long-range~LR! Cou-
lomb potential V(r )51/r and short-range~SR! strongly
screened Coulomb potentialV(r )5exp(2r/rs)/r with r s

50.25 in the units of lattice constant. We study rectangu
clustersLx3Ly with the periodic boundary conditions. Th
dimensionless vector potentialf5(fx ,fy) in the Hamil-
tonian is equivalent to the twist of the boundary conditio
by the fluxF i5Lif i , i 5x,y. The energy spectrum is pe
riodic in Fx andFy with the period 2p.

As a basis for computations we use many-electron w
functions at J50 in the coordinate representation:Ca

5) i 51
N ar i

† uVAC&. The total size of the Hilbert space isCM
N ,

where M5Lx3Ly is the area of a system, andN is the
number of particles.

The basic functionsCa can be visualized as picture
which we callicons. Some lowest-energy icons are shown
Fig. 1. The energy of each icon is calculated as a Madel
sum, assuming that the icon is repeated periodically over
infinite plane with a compensating homogeneous ba
ground.

The icon with the lowest energy is a fragment of the cr
tal. The icons with higher energies represent different ty
of defects in the WC.

A. Quasimomentum representation

The Hamiltonian Eq.~1! is translationally invariant. For
each icona there arema different icons that can be obtaine
from it by various translations. These icons are combined
get the wave function with total quasimomentumP:

FIG. 1. Five icons with the lowest energies for~a! n51/2, LR
interaction,~b! n51/2, SR interaction, and~c! n51/6 LR interac-
tion.
r

s

e
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e
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-
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to

CaP5
1

Ama
(

r
exp~ iPr!TrCa . ~2!

The summation is performed overma translationsTr . This
transformation reduces the effective Hilbert space size
approximatelyM times.

For the icons with periodic structures the numberma of
different functionsCaP is smaller thanM . For example, the
icon C0 of the WC with one electron per primitive cell gen
eratesm051/n different values ofP. These values are dete
mined by the conditions

~21!Qjexp~ iPl j !51. ~3!

Here l j are the primitive vectors of the WC, andQj are
the numbers of fermionic permutations necessary for tra
lations on these vectors. These conditions can be easily
derstood. If translation on a vectorl j is applied to Eq.~2!,
the right-hand side acquires a factor (21)Qj , while for a
function with givenP this factor must be equal to exp(iPl j ).
If Qj are even for bothl j , the allowedP form the reciprocal
lattice of the WC. However, in the case when one or both
Qj are odd, the lattice is shifted byp in the corresponding
directions. In such caseP50 is forbidden. The complete se
of ma nontrivial values ofP can be obtained by restrictingP
to the first Brillouin zone of the background lattice. One W
is represented by a number of icons obtained from each o
by the point-group transformations of the background latti

Note that the total number of allowed values ofP for the
WC is the property of the WC and it remains finite at infini
cluster size. On the contrary, an icon representing a p
defect in a WC generates all vectorsP. Their total number is
equal to the volumeM of the first Brillouin zone of the
background lattice.

B. General remarks

In the macroscopic system all the states generated by
WC icon form the ground state degenerate at smallJ. This
degeneracy appears because the effective matrix elem
that connect translated WC’s are zero in the macrosco
limit. The total energy as a function of quasimomentumP
has identical minima at allP generated by the WC icons. Th
spectra of excitations in the vicinity of these minima are a
identical.

The charge density for the state with given quasimom
tum P @see Eq.~2!# is always the same at all sites of the ho
lattice. However, at smallJ the correlation function indicate
a long-range order. Any small perturbation, that viola
translational invariance splits the degeneracy in such a
that the ground state describes a single WC with a str
modulation of the charge density.

The lifting of the ground-state degeneracy at some criti
value Jc indicates a structural phase transition and resto
tion of the host lattice symmetry.

The flux sensitivity of a macroscopic system is zero
small J. It becomes nonzero at some finite value ofJ that
might be different fromJc . We associate this transition wit
the IM transition.15

For the finite system the following results can be obtain
directly using the perturbation theory with respect toJ:
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57 6951STRUCTURAL AND INSULATOR-METAL QUANTUM . . .
~i! The ground state and the lowest excited states ha
large common negative shift that is proportional toJ2 and to
the total number of particlesN. This shift is the same for al
low-lying states and does not affect the excitation spectr
of the system.

~ii ! At n51/2 the splitting of the ground state appears
the Nth order and is proportional toJN. At other filling fac-
tors the degeneracy of the ground state atJ50 is larger than
two. The splitting is determined by matrix elements, whi
are proportional toJK. For each matrix element the value
K is equal to the number of hops necessary to obtain
crystalline structure from another and is proportional toN.

~iii ! The flux dependence of the ground state for the fl
in the x direction appears in theLxth order and is propor-
tional to JLx in the 2D case. In 1D the flux dependence a
pears in theNth order and is proportional toJN.

Thus, we conclude that both the lifting of the ground-st
degeneracy and the appearance of the flux sensitivity o
very sharply and they can be used as convenient criteria
the structural and the IM transitions, respectively. Note t
the correlation function is a less sensitive criterion for sm
clusters14,18 since it does not exhibit sharp behavior in t
transition region.

III. RESULTS OF COMPUTATIONS AND DISCUSSION

A. Results of computations

Figures 2~a! and 2~b! show the results of diagonalizatio
for cluster 436 with 12 electrons for the LR~a! and SR~b!
interactions. The total energyE is shown as a function ofJ.
The ground-state energy is taken as a reference point foE.
Here and below, the unit of energy is the LR interacti
energy between nearest neighbors. AtJ50 the values ofE
coincide with the energies of the icons shown in Fig. 1. W
define D as the gap between the ground and first exci
states atJ50. Note thatD in the LR case is almost exactl
10 times larger than in the SR case@see Figs. 1~a! and 1~b!#.

At large J the energyE is linear in J. Thus, we can
conclude that with increasingJ in this interval we go all the
way from classical icons to free fermions. The ground st
is almost degenerate at smallJ and it splits into two states
with increasingJ. As we have discussed above, this is
manifestation of the structural transition. The quasimome
of these two states,P5(0,p) and (p,0), are those generate
by the WC icon. In Figs. 2~a! and 2~b! they are denoted a
~0,3! and ~2,0!, where (nx ,ny) stands for quasimomentum
with projectionsPx52pnx /Lx , Py52pny /Ly . The other
branches are the bands of defects.

Figures 3~a! and 3~b! show flux sensitivitydE5uE(p)
2E(0)u, computed for the ground state for two directions
the vector potential. HereE(F) stands for the total energy a
a function of Fx or Fy . In accordance with perturbatio
theory ~see Sec. II B!, the flux sensitivity at smallJ obeys
the lawsJ4 and J6 for the direction of the vector potentia
along the short and long sides of the cluster, respectiv
The energy splitting between the lowest states withP
5(0,p) and (p,0) is also shown. At smallJ the splitting is
proportional toJ12 ~12 is the number of particles!, as it fol-
lows from the perturbation theory.
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At large J the flux sensitivity is linear inJ and coincides
with the free-fermion value. Note that for free fermions
n51/2 the flux sensitivitydE is size independent for larg
clusters.17

The intervalsdJ where computational curves fordE
make a crossover from one asymptotic to another are pr
narrow. In what follows we assume that these are the crit

FIG. 2. Low-energy part of the spectrum as a function ofJ for
the 436 cluster atn51/2 for LR ~a! and SR~b! interactions. The
numbers (nx ,ny) denote the components of quasimomentumP
5(2pnx /Lx,2pny /Ly). The ground-state energy is taken as a r
erence point.
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6952 57E. V. TSIPER AND A. L. EFROS
intervals for the IM transition, smeared in a finite clust
These critical intervals can be fairly well defined for ea
cluster and should shrink into a transition point with incre
ing cluster size.

The vertical bars in Figs. 3~a! and 3~b! show the estimated
critical interval dJ for the IM transition, which is approxi-

FIG. 3. Flux sensitivity for two directions of vector potenti
and the ground-state splitting as a function ofJ at n51/2. ~a! LR
interaction for a cluster 436. ~b! SR interaction for 434, 436,
and 438 clusters. Dashed lines show large-J and small-J
asymptotic as obtained by the best fit with correct powers ofJ. The
vertical bars show the critical region of the transition.
.

-

mately 0.15—0.25 for the LR interaction and 0.015—0.0
for the SR interaction in the 436 cluster.

The behavior of the ground-state splitting~GSS! at largeJ
is more complicated. In the free-fermion approximation t
GSS is zero. Considering interaction as perturbation one
show that in the 434 cluster the GSS→0 asJ→`. In the
436 cluster the GSS→5.7631025 for the SR interaction
and the GSS→0.14 for the LR interaction asJ→`. These
analytical calculations are in good agreement with the co
putational results at largeJ given in Figs. 3~a! and 3~b!. In
the case of SR interaction the GSS curve has a maximum
is reasonable to assume that the crossover from the W
free fermions occurs in the vicinity of this maximum. The
is no maximum in the case of LR interaction and the cro
over region can be estimated using the sharp maximum
the second derivative.

We conclude that within the accuracy of our compu
tions, limited by the finite cluster sizes, the IM transitio
detected by the flux sensitivity and structural transition d
tected by the GSS occur simultaneously.

Comparison of Figs. 3~a! and 3~b! shows that the depen
denciesdE(J) for the LR and SR potentials are almost i
distinguishable if all the energy scales for one of them
adjusted 10 times. This factor is just the ratio of zero-J gaps
D for these two cases. Thus, we come to the conclusion
Jc depends on the type of interaction potential mos
through the value ofD. The same applies to the gener
structure of the low-energy spectrum of the system in
transition region as can be seen from comparison of F
2~a! and 2~b!.

Figures 4~a! and 4~b! show the data forn51/6 and LR
interaction. Figure 4~a! looks more complicated than Figs
2~a! and 2~b!. The WC forn51/6 is shown in the first icon
in Fig. 1~c!. There are four such WCs which can be obtain
from each other by point-symmetry operations. Each W
generates six different values ofP. Thus, at smallJ the
ground state of the system is 24-fold degenerate. The de
eracy is high, however, it remains the same in the infinit
large cluster.

The primitive vectors of the WC atn51/6 cannot be
obtained from each other by any symmetry operation
the host lattice. This means that the WC phase belong
a reducible representation of the symmetry group of th
host lattice. Following Landau and Lifshitz,19 the symmetry
reduction in the second-order phase transition should be s
that the low-symmetry phase belongs to an irreducible r
resentation of the symmetry group of the high-symme
phase. We conclude that the single second-order phase
sition is forbidden in this case. However, it can occur a
series of transitions, each reducing the symmetry one
further. In fact, Fig. 4~a! recalls the picture of multiple tran
sitions. We think that each splitting of the energy levels ge
erated by the WC icon manifests a structural transition. T
636 cluster is too small to distinguish the critical interva
for each of these transitions. We can only conclude fr
Figs. 4~a! and 4~b! that the critical intervaldJ for all of the
structural transitions and IM transition is 0.01—0.03. Th
interval is shown by vertical bars in Fig. 4~b!.

B. The mechanism of transition

Our data suggest the following mechanism of the tran
tion. The width of the band of the lowest defect in the W
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57 6953STRUCTURAL AND INSULATOR-METAL QUANTUM . . .
increases withJ such that its lowest edge comes close to
energy of the ground state18 @see Figs. 2~a! and 2~b!, 4~a!,
and 5#. Strong mixing between the crystalline and defe
states with the same quasimomentum occurs at this p
The avoided crossing appears between the ground state
the states in the defect band.

FIG. 4. Results forn51/6, 636 cluster.~a! Low-energy part
of the spectrum;~b! flux sensitivity for differentP and two direc-
tions of vector potential. The numbers (nx ,ny) denote the values o
P as in Fig. 2. The reference point is taken to beA1BJ2, whereA
is the energy of the WC atJ50, andB5177 is the exactJ2 term as
obtained from perturbation theory. Dashed lines have the s
meaning as in Fig. 3. The vertical bars show the critical region
the transition.
e

t
nt.
nd

One can interpret the avoided crossing in terms of
ground state, which acquires a large admixture of def
states. This interpretation recalls the idea of zero-point
fectons proposed by Andreev and Lifshitz.20

In principle, one can imagine that the state with a qua
momentumP different from those generated by the WC ico
becomes the ground state via a branch crossing. Howeve
all cases we have considered, we observe the avoided c
ing between the crystalline state and the state in the de
band with the sameP. Assuming that this is the case fo
larger clusters, we conclude that the phase transition is no
the first order.

The proposed mechanism of the transition can be ill
trated by the dependenceE(P) at givenJ. Unfortunately, in
the 2D case the number of discreet values ofP along any line
in the first Brillouin zone is small even for the largest 2
system we study. To clarify our understanding of the tran
tion it is instructive to analyze the data for 1D systems.

We have considered 1D systems with the nearest-
next-nearest-neighbor interaction21 and the system with LR
interaction. In the latter case we study Hamiltonian Eq.~1! at
filling factor n51/2 andV( i 2 j )51/u i 2 j u. In 1D we switch
from the homogeneous background to the chain with61/2
charges for the empty and occupied sites respectively.

Figure 6 shows the results for the flux sensitivity vsJ for
different system sizesL. The sharp exponential behavior in
dicates that the system becomes an insulator at smallJ. This
result clearly contradicts the statement by Poilblancet al.22

that the 1D Coulomb system is metallic at allJ. This result
contradicts the prediction by Poilblancet al.22 that the
ground state of the ID Coulomb system is metallic. No

e
f

FIG. 5. The same as Fig. 2~b! for the 434 and 438 clusters.
The data for the 438 cluster is presented forP5(0,0) ~dots! and
P5(p,p) ~circles! only.
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6954 57E. V. TSIPER AND A. L. EFROS
however, that this prediction is mostly based on compu
tions for n51/3, while we considern51/2.

An extrapolation to 1/L→` shown in the inset gives a
rather wide interval forJc of the IM transition between 0.17
and 0.3.

Figure 7 shows a few lowest eigenvalues for each qu

FIG. 6. Flux sensitivity in unitsJ/L as a function ofJ for the 1D
system with LR Coulomb interaction atn51/2 for different sizesL.
Long-dashed line shows the theoretical valueLdE/J5p for free
fermions. The inset shows the extrapolation to 1/L→0.

FIG. 7. The dependence of the total energy on the total qu
momentum at differentJ for 1D system with LR Coulomb interac
tion at n51/2 and sizeL528.
-

n-

tized value ofP for a cluster of 28 sites with 14 particles
Note that the spectrum has nontrivial symmetry around
points P56p/2. This symmetry appears for evenN at n
51/2 as a result of the particle-hole symmetry.

For evenN the WC icon generates two states with qua
momentaP56p/2, which are degenerate at allJ. As one
can see from Fig. 7, atJ50.05 these states are separated
a gap from the continuum of states, generated by the ico
the point defect. AtJ50.1 the defect band broadens and,
a result, the gap decreases. However, the lowest eigenv
at P56p/2 is still separated from the defect band, where
the second eigenvalue belongs to it. At this point an avoid
crossing starts to develop and the width of the gap rema
almost unchanged fromJ50.1 to J50.2. In the latter case
the lowest eigenvalue is no longer a separated point,
rather can be ascribed to the band. AtJ50.3 it becomes
quite clear that the lowest eigenvalue belongs to the c
tinuum spectrum. Finally, the picture atJ51 is almost a
picture for free fermions with the Fermi momentumpF
5p/2 and with the lowest branchEmin(P) close toJucos(P)u.

The proposed mechanism of the transition implies t
critical value of J is determined by the energyD of the
lowest defect atJ50. Our 2D results are summarized in th
Table I. It shows for comparison the middle pointJm of the
critical interval dJ and the zero-J gap D for all cases we
have studied. One can see that bothJm and D change by a
factor of 10 depending on the filling factor and the type
the interaction potential.

However, their ratioJm /D is almost constant and is clos
to 0.5 in all cases. Since we assume thatJm→Jc with in-
creasing cluster size, this implies an empirical rule forJc :

Jc5bD` , ~4!

whereb is some number that is close to 0.5, andD` is the
smallest energy necessary to create a point defect in an
nitely large system.

C. Study of the size effect

1. Classical size effect

As can be expected from Table I, the energyD of the
lowest excited state atJ50 may have much influence o
Jm . We show here thatD may have a strong size depe
dence in small clusters. This kind of a size effect can
called ‘‘classical.’’

The SR and LR potentials are very different in this aspe
In the case of SR interaction the defect with the lowest
ergy is the point defect@see Fig. 1~b!#. The weak dependenc
of D on the cluster size is only due to the interaction of t
defect with its images, which appear as a result of the p
odic boundary conditions.

i-

TABLE I. Zero-J gapsD and estimated critical regionsdJ for
different systems studied.

System dJ Jm D Jm /D

n51/2, LR, 436 0.15–0.25 0.2 0.444 0.45
n51/2, SR, 436 0.015–0.025 0.02 0.0448 0.44
n51/6, LR, 636 0.01–0.03 0.02 0.037 0.54
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57 6955STRUCTURAL AND INSULATOR-METAL QUANTUM . . .
In the case of LR interaction the energyD depends
strongly on the size of the cluster for relatively small clu
ters. This dependence becomes stronger for smaller fil
factors. One can see in Fig. 1~a! that in the 436 cluster at
n51/2 the point defect appears only as the fifth icon. Atn
51/6 the five lowest-energy icons shown in Fig. 1~c! do not
contain a point defect at all.

We have studied thoroughly the low-energy spectrum
LR interaction atJ50. The square clusters with differen
sizesL and filling factors 1/2, 1/3, 1/4, and 1/6 were an
lyzed using classical Monte Carlo technique. The results
presented in Fig. 8. Atn51/3 and 1/6 new low-energy type
of dislocations appear with increasing the cluster size. Th
dislocations are restricted by the periodic conditions
smaller clusters. As a result,D decreases with size for sma
clusters. However, for large enough clusters new dislocat
cease to appear, so thatD does not decrease. Since the e
ergy of a dislocation is proportional to the size of the clust
the point defect should win the competition in large enou
clusters.

For n51/2 and 1/3 the point defect becomes the low
excited state starting with the sizes 636 and 939, respec-
tively. For n51/4 and 1/6 we are unable to find this critic
size. However, the increase ofD with L ensures that the
point defect should eventually become the lowest exc
state.

Our conclusion is that in the case of LR interaction o
should expect a significant size effect inJm due to the clas-
sical size effect inD.

2. Quantum size effect

Since the classical size effect is negligible for the S
interaction we can analyze the ‘‘quantum’’ contribution

FIG. 8. Size dependence of the lowest excitation energy aJ
50 for different filling factors as obtained by classical Monte Ca
simulation. The saturation occurs at such size when the point de
becomes the lowest excitation.
-
g

r

-
re

se

ns
-
r,
h

t

d

the size effect inJm comparing the results for different clus
ters. The size dependence ofJm for the SR potential can be
estimated from Fig. 3~b!.

We study only the clusters with the dimensions comm
surate with the primitive vectors of the WC. Otherwise t
periodic continuation destroys the crystalline order. Forn
51/2 this requires that bothLx and Ly are even. Since we
can study clusters up to 16 particles this condition restr
our options to 434, 436, and 438 clusters.

The low-energy spectrum for the 434 cluster is shown in
Fig. 5. In this case the WC icon generates quasimomenP
5(0,0) and (p,p). The flux sensitivity and the ground-sta
splitting are shown in Fig. 3~b! for all three clusters studied
One can see that the data do not show any pronounced
tematic size dependence ofJm , suggesting that for the SR
potentialJc is within the interval 0.015–0.025.

Thus, we have found that the size effect at a given va
of D is small. Assuming this result to be independent of t
type of potential, one can suggest that for the LR interact
the ‘‘classical’’ contribution to the size effect is the majo
one. Then one can use Eq.~4! to estimateJc for the LR
potential using the classical energyD` . For n51/2, say, we
get D`50.61 ~see Fig. 8! resulting inJc'0.3. To get a re-
liable estimate for this case from the quantum computati
one should consider at least a 636 cluster since the poin
defect becomes the lowest excited state starting with
cluster size.

D. Gap at nonzeroJ

Now we analyze the gap between the split ground s
and the excited states that belong to the defect band.
gap is clearly seen in Figs. 2~a!, 2~b!, 4~a!, and 5. At largeJ
the branches have a form of beams with different slop
These slopes definitely come from the confinement quant
tion of free fermions.

The large number of states in each beam reflects h
degeneracy of the free-fermion ground state atn51/2. For
example, in Fig. 5 all lines that are horizontal at largeJ are
the states that are degenerate for the free fermions. The s
ting of these states is a result of interaction. The gap betw
the split ground state and the bunch of the states in the s
beam can be easily calculated in the mesoscopic regio
largeJ, where 4p2J/L2@1/L. The picture of beams is valid
in the same region and it does not imply the existence o
gap at largeJ in a macroscopic system.

On the other hand, the gapD at J50 is the energy of
defect and it has a nonzero limit in a macroscopic syste
Thus, an important question arises, whether or not the
has a nonzero limit right after the IM transition. The nonze
gap would mean that the state after the transition is su
conducting.

We have put a lot of computational effort into answeri
this question but the results are still inconclusive. Our b
achievement is shown in Fig. 5 where we compare the res
for 434 and 438 clusters. The confinement quantizatio
would prescribe that the gap decreases in half. We h
found that the gap for the 438 cluster is less than for the
434 cluster but the ratio is significantly larger than 0.5.
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IV. CONCLUSIONS

We have performed a numerical study of the structu
and IM phase transitions in 2D fermionic systems w
Hamiltonian Eq.~1!. The structural transition has been d
tected by studying the splitting of the ground state, degen
ate in the crystalline phase. Simultaneously we studied
IM transition by computing the sensitivity of the groun
state energy to the boundary conditions. In the 2D case
have studied the systems with LR and SR interactions
different filling factors. Within the accuracy determined b
the size effect the IM transition occurs simultaneously w
the structural transition.

We argue that the structural transition on a lattice is no
the first order in all cases considered. We think that the
gin of the transition is an avoided crossing of the grou
state and the defect states in the Wigner crystal with
same total quasimomentum. This simple picture implies t
i,

io

.

l

r-
e

e
at

f
i-
d
e

at

the critical value ofJ is determined by the defect with th
lowest energyD at J50. To illustrate our point the data fo
the 1D system with Coulomb interaction are also presen
The possibility of the delocalized phase above the transi
to be superconducting is discussed.

We have found that the size effect is not very strong
Jc in the case of the SR interaction. For the LR interaction
is strong because of the size dependence of the defect en
D. We argue that a reliable estimate forJc from finite-cluster
computations in this case can be obtained with the use of
empirical rule Eq.~4!.
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