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Abstract. The tight-binding model is considered for a square lattice with filling facyd. 1

The array has the shape of a rectangle with boundary conditions in both directions twisted
by 27¢, and 2r¢,. The components of the twist are associated with two components of the
magnetic flux in torus geometry. An analytical expression is obtained for the energy and for the
components of the persistent current (PC) at a given flux and temperature. It is shown that at
zero temperature the PC density is proportional to the vector potential with a coefficient which
does not depend on the size of the system. This happens because the Fermi surface for a square
lattice at filling factor 1/2 is flat. Both the energy and the PC are periodic functions of the two
flux components with the periodsy/q and ¢o/s wheregy = hc/e, andqg ands are integers

which depend on the aspect ratio of the rectangle. The magnitude of the PC is the same as for
superconductors. Therefore, a 3D system constructed from a macroscopic nhumber of isolated
coaxial cylinders at zero temperature is reminiscent of London’s superconductor. It exhibits the
quantization of trapped flux as well as the Meissner effect. However, all of the phenomena
are of a mesoscopic nature. The critical figld decays with the effective size of the system,

H. ~ 1/R.y. The magnitude of the PC decays withas exg—n T R.r/2at), wherer is the
hopping amplitude and is the lattice constant.

1. Introduction

Persistent current (PC) in mesoscopic structures [1, 2] has been extensively studied during
the last decade both experimentally [3-5] and theoretically. The theoretical investigations
concentrated on the role of different degrees of disorder [6, 7] and on the role of the
interaction between electrons [8, 9].

The PC is a reaction of a system to an applied fibx or, equivalently, it can be
described as a change of the energy of the system due to twisted boundary conditions. In a
two-dimensional system which forms a cylinder, the twisted conditions mean that the wave
function of a system acquires a factor € ®/¢g) upon a circulation of one electron
around the axis of the cylinder. Hegg = hc/e is the flux quantum.

The flux @ is related to the tangential componehbf the vector potentiadd = 27 RA,
whereR is the radius of the cylinder. For a system with Galilean invariance the following
simple statement is correct. The energy of a state with a given value of the tangential
componentP of the total momentum depends a@nas

2
E(P,A) = Eq— —(P - —A) (1)
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whereN is the number of electrons and = Nm is their total massy being the mass of
one electron. The 2D current densityfor a state with fixedP is

) c(0F nezA eP 5
P = S(&A)P_ me" s @

where S is the area of the cylinder surface and= N/S. At P = 0 equation (2) is

reminiscent of the London equation for a superconducting current. In this:csiseuld be

the superfluid density.

A general derivation of equation (2), given above, is misleading because PC should be
defined as a current in the ground state rather than in a state withHixéa two- or three-
dimensional systems of free electrons the derivative of the energy with respéatannot
be taken in such a simple way because the intervats,ofthere branches of the spectrum
with different P change each other in the ground state, tend to zero with increasing system
size.

For electrons in a periodic potential the situation is typically similar. The derivative of
the energy with respect to the flux is large for a given branch. However, different branches
replace each other in the ground state over such small intervdighudt the derivative taken
at a given total quasimomentum does not reflect properties of the ground state. Scalapino
et al [10] considered a tight-binding model with a two-dimensional square lattice. Their
computations show that at filling factor= 1/4 the first level crossing occurs @t~ 1/L,
where L is the size of the system. Their general conclusion is that the superfluid density,
as found from the relation betwegnand A, is zero for free electrons in the tight-binding
model. We show in this paper that this is not always the case.

We consider a 2D system of free electrons on a square lattice in a tight-binding
approximation at filling factonn = 1/2. The shape of the system is assumed to be a
rectangle with arbitrary aspect ratio. The specific features of the PC in this system have
been demonstrated by Cheuegal [11] We show here that & = 0 the two-dimensional
PC density does not depend on the size of the system and has a form

2
j= - A~ Ag). 3)
T mc
Herem = h?/2ta? is the electron mass,being the nearest-neighbour hopping energy. The
two-dimensional density is determined @s= 1/242, wherea is the lattice constant. For
simplicity, we consider a system of spinless fermions. The generalization to the case of
non-interacting fermions with spin is straightforward.

The constantdy shows that the minimum of energy does not occur at zero flux. In
contrast to equation (2), equation (3) describes PC in the ground state of the system which
is a periodic function of® with period ¢o/q. Equation (3) is valid within the interval
0< ® < ¢o/q, 0r 0< A < ¢o/2m Rq, and is to be repeated periodically for other values
of the flux. Hereq is an integer which depends on the aspect ratio of the cylinder and
on the type of the boundary conditions imposed in the direction of the cylinder axis. The
first term is shown to be independent of the aspect ratio. Thus we have found that the PC
density has the order of magnitude of the London current in superconductors.

Considering the 3D system constructed of a large number of coaxial closely packed 2D
cylinders we show that it mimics the Meissner effect and the quantization of flux trapped
in the opening.

These properties appear since the Fermi surface at 1/2 is flat and no branch
crossings occur over large intervals &f Say, for a square array, no branch crossing
occurs over the whole interval @ ® < ¢, which means thag = 1.
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In fact, we are discussing a mesoscopic effect. The expression (3) is valid only at
mesoscopically small temperature, and the ideal diamagnetism occurs for mesoscopically
small values of magnetic field:

a
T <T, ~—t 4
<L~ g (4)
a t
H<H.~—.— 5
= Ref azb ( )

whereb is the spacing between neighbouring coaxial cylinders. The effectiveRrsizés
given by

R.f =sD =q2nR = \/sq2t RD (6)

whereD is the length of the cylinders andandg are integers determined by the aspect ratio
2n R/ D (see below). Thus, this system can be classified as a ‘mesoscopic superconductor.’

Note that the average distance between energy levels in a 2D system is proportional to
1/R?. The 1R behaviour in the above equations is also a result of the flat Fermi surface at
v =1/2. As is seen from the calculations, all relevant interlevel distances are of the order
of (a/R)t, rather than(a/R)?t.

Since bothT. and H. vanish at largeR, there are no real critical phenomena in this
model system.

2. Calculation of PC at zero temperature

Consider a rectangle df, x L, lattice sites with periodic boundary conditions twisted in

both directions by 2, /¢o and 2r d, /¢g. This corresponds to a toroidal geometry where

®, is the flux through the cross section of the torus d@nds the flux through the opening.
The single-electron energies have the form

E(”m ny, ¢x7 ¢y) =2t {COS[i—n(nx - ¢x):| + COS[i—n(ny - ¢v)]} (7)
y

X
where we introduce dimensionlegs , = &, ,/¢o to simplify the notation. The values of
integer quantum numbers andn, are restricted to the rectangle, ;| < L, ,/2 (the first
Brillouin zone). To find the energy of the ground state one has to swm n,) over the
values{(n,, n,)} inside the Fermi surface.

In principle, the calculation of PC can be performed either for constant number of
particlesN or for a constant value of chemical potential Generally speaking, these two
definitions are not equivalent. It is important to note that such a problem does not exist at
v = 1/2 at even values oL,, L, at least. As one can see from the equation (7), every
single-electron energy changes sign under the transformation, — n.+L./2,ny+L,/2.

It follows that atv = 1/2, due to the electron—hole symmetry, the chemical potential

zero at any value of the flux and at any temperature. Thus, if the flux changes-a3,

the number of particles in the ground state of the system does not change and if the flux
changes at a given number of particles such that1/2, the chemical potential does not
change.

Let us define the Fermi ‘surface’ (FS) in two-dimensionaln, space by the equation

6(”){1”)/7 ¢x7 ¢)y) :0 (8)
consideringn,, n, as continuous variables. It is easy to see that the FS forms a rhomb at

any value of the flux. Change in the flux produces a shift of the FS as a whole without
changing its shape.
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Figure 1. The Fermi surface at = 1/2. The points represent allowed integer values: pf
andn, inside the first Brillouin zone. The dashed lines show the Fermi surface at zero flux.
The solid lines are the Fermi surface shifted by flux. The aspect Iatid., = 1 (a) and
Ly/Ly =2/3 (b).

First, let us consider for simplicity a square samgle,= L,. The FS forms a square
shown in figure 1(a). A, , = 0 some of the allowed single-electron states lie exactly
at the sides of this square. All of the states inside the square and half of the states at the
sides of the square are occupied. All of the states at the sides have the same energy so the
occupation numbers of these states are not defined, while the many-electron ground state is
degenerate.

The degeneracy is lifted at infinitesimally small valuespofSuppose thap, = 0 and
¢. > 0. Then the FS is shifted to the right (see figure 1(a)). All occupation numbers
become defined. That is, the states at the right-hand side of the initial square get occupied
and those at the left-hand side become empty. Note that the occupation numbers of as many
as 2. states change whef\ crosses zero.

It is easy to see that the occupation numbers are constant throughout the interval
0 < ¢, < 1. The total energy decreases with and then increases again. At = 1
all electrons jump one step to the right and the Fermi surface restores its original position
with respect to the lattice of integer numbers, n,). The total energy thus returns to the
same value as at, = 0.

It follows that the total quasimomentum of the electron system in the ground state does
not change through all of this interval and no branch crossing occurs. Thus the sum over
the occupied states can be easily evaluated:

L/2-1  L/2-n, L2

E@ge¢) =Y, >  [etn)+etn,—n)l+ > en,0)

ny=1 ny=—L/24+ny+1 ny=—L/2+1
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e2ri/L ) ) .
=81 Re (14 /e 2700y gezront) ©)
This expression is exact in the region<0 ¢, £ ¢, < 1. In the limit of largeL, the
¢-dependent part of the energyE (¢x, ¢,) = E(¢x, ¢y) — E(0, 0), can be written in the
form

SE($x, dy) = 81 [¢2 — pe (1 — )] . (10)
Repeating equation (10) periodically one gets the expression valid over the whole plane
(¢X’ d)y)
SE =4 | ({ }—12+ { }—12—1 (11)
(@xs Py) = ( o 5) ( o E) >

where¢. = ¢, = ¢,, and{---} denotes the fractional part of the number, defined as the
difference between the number and the largest integer less than it.

Figure 2 shows the eneryf (¢, ¢,) as given by equation (11). The positions of the
energy minima form a square lattice shifted from the origin:

e
<¢x,¢y)=<ﬂ’ ’)

2 72
with arbitrary integers and ;.

The point¢, = ¢, = 0 corresponds to a maximum of energy, in the same way as in
1D case with an even number of electrons. At this point the derivativds/dg, , are
discontinuous. Such behaviour appears as a result of lifting of the degeneracy of the states
at the Fermi surface.

The PC atT = 0 can be found as the derivative of the total energy with respect to the
flux:

oE c (J0E oE ct 1 1
R i i o B R R CERE) R

The magnitude oBE(¢., ¢,) and I, ,(¢x, ¢,) as given by equations (11) and (13) is
independent of the sizé of the square. Such a large magnitude results from the fact that
in the region with no branch crossings (or, with no electron changing its state) all electrons
together contribute to the current.

It may seem that the aspect rafig/L, = 1 is crucial for the effect. In the next section
we calculate PC at finite temperature for arbitrary aspect mfie= sK, L, = gK with
mutually prime integers andg. We assume the macroscopic linkt — oo. It is useful
to generalize the definition af.. for a rectangular sample as follows:

¢i = Q‘i’x + s¢y‘ (14)
With this notation our results for the limif = 0 read

L—-——< [({¢ }—3)+({¢> }—}ﬂ
Y sq ¢o/q 2 2

8 ct 1 1
b= (#1-3) - (1-3)]

The flux-dependent part of the energy can be restored from equation (15):

4 1\2 1\* 1
SE(¢x, ¢y) = é |:({¢+} - 5) + <{¢—} - E) - §:| . (16)

(12)

(15)
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1.0

Figure 2. Lines of constan8E(¢., ¢,) as given by equation (16) for a square sample with
s = ¢ =1 (a), and for a rectangle with= 2 andg = 3 (b). Note the difference in periodicity.

This result is a generalization of equation (11) to an arbitrary aspect satioof the
rectangular sample.

As follows from equations (15), (16), the energy and current as functions of flux do
depend on the aspect ratio. However, they do not depend on the system size, if the aspect
ratio is kept constant. The result, equations (15), (16), can be understood from figure 1(b),
which is drawn for the case whefg, /L, = 2/3. Unlike the case for figure 1(a), there are
now points(n,, n,) closer to the Fermi surface than one lattice spacing. However, there
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is still a regularity in their positions. That is, as the Fermi surface shifts with the flux,
the points enter the Fermi sea in groups. Consider, for example, the same case as above:
¢, =0 and¢, > 0. As seen in figure 1(b), the branch crossings occur only, at 27/3,
47 /3 and Z. In terms of¢. this corresponds to integer. = 3¢, = 1, 2 and 3. These
values of the flux are determined byandg and do not change with the size of the system.
The number of points in each group is, in turn, proportional to the size of the system, so
the corresponding contribution to the current is large.

At @, = 0 equation (15) gives

16 ct D, 1
L=-= -Z). 17
5q $o/q <{¢0/Q} 2) ()

A similar equation has been obtained in reference [11] for the cylinder geometry. The
difference from the torus geometry considered here is in the boundary conditions along the
cylinder axis, chosen as In what follows we assume periodic boundary conditions in this
direction with®, = 0. This leads to equation (17) for a total current through the cylinder.
Cheunget al [11] impose the condition that the wave function is zero at the edges of the
cylinder. Their result is formulated in terms of a Fourier series. It can be shown that for
their boundary conditions the second term in equation (17) changes while the first term
remains intact. Note that both energy and current are periodic functions of flux with period
¢o/q rather thanpo.

Taking into account that the current densjty= I, /(aL,) and that the vector potential
A, = ®,/(aL,) one obtains equation (3) with the first term independent ahdq.

3. PC at finite temperature

We start with the equation

[ —_F szilqil de(ny, ny) 1 (18)
e ¢0 ",x=o I‘ly=0 ad)x 1 + eX[XE(nX, n)’)/T) .

It is convenient to rewrite the single-electron energy in the form
(ns.ny) = —41 0o ——(ns — ) ) cod —— (n_ — ¢_) (19)
eny,ny) =— —(ny — —(n_ —¢_
y sqK * * sqK

wheren, = gn, = sn, and ¢, are given by equation (14). Usinyd¢, = ¢q(3/9¢+ +
d/d¢_) we find that the current has two terms:

1
I, = ;(1+ +1) (20)
where

sK—1gK—1
X 4 1
L= —sg s Y Y 2 ) _ (21)
¢0 nx_o n}__o a¢:|: 1+ exme(nxs ny)/T)

The idea of our calculation is to transform equation (21) in such a way that the internal
sum gives the PC of the 1D problem with an effective temperature and effective flux. For
this purpose we use the identity

sK—1gK-1 sK—1g—1K—

> Zf(nx,n)_ZZZf(m+d+sk d + qk). (22)

ny=0 n,=0 m=0 d=0 k=
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This identity is valid for any functiory (n,, n,) periodic inn, andn, with periodss K and
g K respectively. Ther, can be written in the form

47TC sK—1¢g—-1K-1 T
-~ 2 ([ o0 ) {0

m=0 d—0 k=0
. -1
(ny — ¢+)) COS(S(]—K(”— - ¢—)>]} )

4t b4
X {1 + exp[—F cos<qu
(23)

A similar expression can be written out fér. Note thatn_ = gm + (¢ — s)d does not
depend ork, while n, = (gm + qd + sd) + 2sqk does depend ok. Therefore, the current
I, can be written as

s -1
I = .0, d) (24)
0

>
=
»Q

|l
o
Y
I

m

whereZ, (m, d) denotes the internal sum ovey

4rer 2T K22 . (2 ~
I,(m,d) = ———— —(k —
D) = e T k_o([s'n<K( ‘MH

-1
x {1+exp[—gco 2—”(k—$+))“ ) (25)
T K

The sum in equation (25) describes the PC in a 1D system with an effective temperature
and effective flux given by

T(m, d) = T/[ZCOE(L(qm + (g —s)d — ¢_)>:|
sqK

¢+ —qm—qd —sd
2sq '

(26)

$-(m, d) =
Using the Poisson summation formula (see reference [12]), one obtains
8rcT & codinK/2)

Z.(m,d) = - sin2rlg,). (27)
bo = sinhinTK/2t)

Performing the summation over andd in equation (24) we note that is a smooth
function of m/K andd/K. However, siti2rl¢,) has an oscillatory behaviour for some
[, so the contribution of the corresponding harmonics vanishes in the Aimit co. The
oscillatory behaviour is absentiifis an integer multiple of £;. For thesd, the sum over
m can be transformed into an integral via= (;r/sK)m, while the sum overl simply
gives a factoly. Thus, one obtains

I = Z A, sin(2zl¢y) (28)
=1

where

T d
A =5qKT— / - P - .
do sinh(lrsq KT /2t Sinp)

(29)
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For the PC in thec-direction one has from equation (20)
I, = % i A [sin2ri¢,) + sin2rlg_)]. (30)
A similar calculat;;; gives
I, = ql i A [sin2rlg.) — sin2rlg_)]. (31)
=1

Equations (29) and (30) give the Fourier series expansion of PC at any temperature.
Expansion ofA; at smallK T/t yields

In this case equations (30), (31) and (32) give the Fourier series expansion of the zero-
temperature result, equation (15).
In the opposite limit,K 7/t > 1, the amplitudes of the harmonics decay as

8¢ lnquT)
A sqKTtexpl ———/—— 33
xR T - @)
so the PC is dominated by its lowest harmonic. Wien= 0 one has
1 16c (RyTt\"? Ry T @
I, ~ ——( / ) exp(—n A > sin( al > (34)
5q $o/q \ @ 2at bo/q

A similar result was obtained in reference [11].

4. Low-temperature magnetic properties

In this section we study the magnetic properties of a quasi-3D system constructed of a
macroscopic number of closely packed coaxial cylinders assuming that the temperature
is very low. Thus the connection between flux and current for each cylinder is given by
equation (17). For the sake of simplicity we assume that the cylinders are long, such that the
circumference of the outer cylinder® = aL, is much smaller than the lengih = aL,.

The distance between the internal and external cylinders is supposed to be much less
than R. We assume further that all of the cylinders have the same kafid, = s/g. One
can imagine a small change either in and L, of adjacent cylinders or in their lattice
constant.

The second term in equation (17) appears since zero flux does not correspond to the
minimum of energy. It may lead to the appearance of a spontaneous flux in this system.
This idea has been put forward by Wohllebetnal and Szopa and Zipper, reference [13],
and then studied in detail in reference [14]. These authors considered a cylinder constructed
from isolated 1D rings. Loss and Martin [15] argued that in a single 1D ring no symmetry
breaking can occur, but their arguments are restricted to the 1D case.

In this paper we concentrate on the first term in equation (17). It is an analogue of the
London current in superconductors and it creates a strong diamagnetism in the quasi-3D
system described above. Suppose that an external magneticHiiglds applied to the
system and that there is a solenoid creating fiuy, inside the internal cylinder.

Let &, be the total flux inside cylindek, wherek = 1 for the internal cylinder and
k = N for the external one. The flux obeys the equation

4 X
O — Oy = 27er<Hex, +5 ; 1(c1>i)>. (35)
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Here b is the distance between adjacent cylinders which we assume to be of the order of
the lattice constant. Since the thicknesd = Nb is supposed to be much less th&n
we have neglected that the radii of cylinders are slightly different. The right-hand side of
equation (35) describes the flux through the area betweehtthand (k — 1)th cylinders
created by the external field and outer cylinders.

The following condition should be added to this finite-difference equation:

47 Y
q)l - cbexr = NR2<Hext + C_D ; I(¢‘,)> (36)
If @, is a smooth function ok one can transform equation (35) into a differential
equation:
d?e P 1
FO _ do/g EEAY -
dr? A2 do/q 2

Here is the analogue of the London penetration depth:

2 4w 16¢ _ 16¢2n3
b ¢ mmc?

(38)

wherens = 1/2ba? is the 3D electron density.
Equation (36) transforms into the boundary condition at R:

R do

2 dr|,_p

The second boundary condition reads
do

D(R) — D,y = (39)

= 27 RH,y. (40)
dr r=R+d
One can use the differential equationifs b.

Equation (37) can also be obtained by minimizing total energy with respect to flux.
The total energy consists of two parts. The first is the energy of the magnetic field in the
space between the cylinders. The magnetic field can be expressed thrdyidh uking
equation (35) as follows:

do

— —27RH(r). (41)
dr

The second part is the internal energy of a 2D electron gas. This energy per cylinder is
given by equation (16) ap, = 0. Thus, one gets for the total energy

1 D do 2 dr
Etoral = 87 27 R (a) dr+/8E(d>) B (42)

Minimizing this expression with respect @(r) and taking into account thatsds /d® =
(—=1/c)I (@), wherel (®) is given by equation (17), one obtains equation (37).

Equation (37) is non-linear since it contains the fractional @gfit$o/q) which makes
the right-hand side periodic. However, it becomes linear if the total drop of the flux inside
the system is smaller thapy/q. If H,,, = O the solution of the linearized equation with
boundary conditions (39), (40) in the case wh&e>d > A is

D) = By + (Dpy — D)2 expf — K (43)
(l") - n+ ext — n) R p<_ A )
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Here
o, = ¢—O<n — }> (44)
q 2

One can see that the flux inside the cylinder with>> » may take only quantized
values ®,, with arbitrary integern. Note that there is no zero flux among the allowed
values of the frozen fluxb,. This is because zero flux does not correspond to a minimum
of the total energy at zero temperature. The solution, equation (43), is obtained in the linear
approximation and it is valid if®,,, — ©,)2A/R < ¢o/q. The interpretation of this result
is that the inner cylinders carry a current which creates a favourable flux for the rest of the
system.

If the system is in an external magnetic figld,,, the solution is

O(r) = O, + 21 RAH,\ exp(—RJer_r) (45)
or in terms of the magnetic field defined by equation (41)
H(r) = Hex, exp(—R—i_Td_r). (46)

In this case the cylinders near the external surface carry current which screens the
magnetic field inside the system and adjusts the total flu®fo The solution is valid
if 2rRAH,,; < ¢o/q. This condition is equivalent to equation (5). It has a simple
interpretation. The loss in the total energy due to the ideal Meissner effect is of the order
of H2,RDb per cylinder. The gain in the energy of a cylinder due to the adjusted flux is of
the order oft/sq (see equation (16)). At large field the loss becomes larger than the gain
and the field penetrates into the system. This is the origin of a ‘mesoscopic’ critical field.
Note that the relatiolH>?RDb ~ t/sq is also equivalent to equation (5).

It follows from the results of the previous section that the zero-temperature approx-
imation holds if s¢gKT/t = T«/sq2rRD/at <« 1. This is the same condition as
equation (4). At larger temperatures the penetration depiftreases as exp7 R.r/4at)
and eventually reaches the thicknesof the cylinder, gradually destroying the strong
diamagnetism.

5. Conclusions

We have presented a model which mimics on a mesoscopic scale some properties of
superconductors, such as the Meissner effect and quantization of flux, though the physics
of the model does not involve any electron pairing. The flux quantum in the modef4s
wheregq is determined by the aspect ratio of the system.

Since the range of temperature and magnetic field for these phenomena shrinks to zero
in a macroscopic system, one should not expect any phase transitions. However, for a
mesoscopic system this range is not necessarily small. Let us assume a hypothetical 3D
layered system with very weak interaction between layers and a flat two-dimensional Fermi
surface. Then it follows from equations (4), (5) that the temperature range is up to 12 K and
the range off,,, is up to 240 G for a system witR,; = 3x107° cm,a = b = 3x 108 cm
ands = 1 eV. In a system with disorder the obvious condition for these phenomena is that
the elastic mean free path is smaller than the $ize

Our model ignores electron—electron interaction. We hope that it is not important at
larget. Our modelling of small interacting systems, up to 18 electrons, shows the same
value of the PC at immediately above the Wigner crystal quantum melting point [16].
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