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Abstract. – The self-consistent computation of electronic polarization in organic molecular
crystals is extended to include, in first order, corrections in the continuous gas-phase charge
distribution ρG(r). The potential ∆Φa(r

a) at molecule a in the crystal is due to the differ-
ence between ρG(r) and a point-charge approximation. ∆Φa(r

a), which represents atomic
multipolar contributions, is evaluated for crystals of anthracene and perylenetetracarboxylic
dianhydride (PTCDA). The corrections to the polarization energies of molecular cations are

P
(1)
+ = −0.25 and −0.14 eV for anthracene and PTCDA, respectively, while P

(1)
− = 0.25 and

0.18 eV for the anions. The leading term of atomic multipoles is the ∆Φa(r
a)-charge inter-

action that corresponds to the charge-quadrupole term in the submolecular approach. There
are also new contributions in ∆Φa(r

a)-redistributed charge and coupling of induced dipoles to
gradients of ∆Φa(r

a). First-order correction to electronic polarization is a general approach
that combines the advantages of discrete charges for self-consistent treatment of crystals with
accurate electrostatic potentials based on the best available molecular charge distribution.

Introduction. – Electronic polarization makes major contributions to ionic states of or-
ganic molecular solids, which are typically insulators with low dielectric constants (κ ∼ 3) and
small overlap between molecules [1–3]. Molecular exciton theory starts with noninteracting
molecules to obtain corrections to gas-phase energies due to the crystalline environment. Such
an approach to polarization is more demanding, since corrections to wave functions are re-
quired. Electronic polarization is formally the change ρ(r)− ρG(r), at fixed atomic positions,
between solid and gas-phase charge densities. No general solution is known. Approximate
solid-state [4] and quantum-chemical [5, 6] treatments focus on the dielectric properties of
semiconductors and molecular polarization, respectively. Small overlap in organic molecu-
lar solids suggests another limit, that of zero overlap. Intermolecular forces are then purely
electrostatic and the crystal problem in the actual structure reduces to molecules in nonuni-
form potentials [7]. We have recently presented [7], hereafter I, a self-consistent procedure for
electronic polarization in organic molecular crystals based on zero overlap and, in addition,
discrete atomic charges, induced dipoles and potentials. We develop here first-order correc-
tions on using ρG(r) rather than discrete charges. The pronounced advantages of a discrete
c© EDP Sciences
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treatment are the motivation for seeking corrections rather than, for example, attempting a
self-consistent continuum analysis.

Electrostatic (Madelung) energies of organic molecular salts are naturally computed us-
ing partial charges [8]. The exact charge density ρG(r) of an isolated (gas-phase) molecular
ion is approximated by point charges at atoms to mimic an extended charge distribution.
Point atomic charges, which we designate as ρ(0)(r) below and use for neutral molecules,
automatically include higher moments of ρG(r) in part. Electrostatic interactions among
neutral molecules lead to multipole expansions with improved convergence on introducing
atomic charges and multipoles [9]. In distributed multipolar expansions [10, 11], the po-
tential φG(r′) generated by ρG(r) at points r′ outside the charge distribution is related to
atomic charges, dipoles and perhaps quadrupoles that are found by least-squares procedures
or optimization on a grid. We instead take ρ(0)(r) from semiempirical theory and associate
∆ρ(r) = ρG(r)−ρ(0)(r) with the collective contribution of atomic multipoles. With the crys-
tal structure as the grid, previous work [10,11] on φG(r′) can readily be applied to electronic
polarization in organic crystals.

We consider an organic crystal with Z identical molecules per unit cell and divide the
crystal into equal molecular volumes, V =

∑
a Va. In the approximation of zero overlap,

ρa
G(r) of molecule a generates φa

G(r
′) at r′ outside of Va. The electrostatic potential Φa(ra)

in Va due to all other molecules b is

Φa(ra) =
∑

b

′
φb

G(r
a) =

∑
b

′ ∫
V

d3rb ρG(rb)
|ra − rb| . (1)

Φa(ra) is the exact crystal potential of molecules with gas-phase charge distributions and has
the crystal’s symmetry. We generalize later to lattices with molecular ions at fixed positions.
The approximation of ρa

G(r) as charges ρ
a(0)
k at atomic positions ra

k is

ρa(0)(r) =
∑

k

ρ
a(0)
k δ(ra − ra

k). (2)

Inserting (2) in (1), we obtain the crystal potential Φ(0)
a (ra) for gas-phase atomic charges.

Then ∆Φa(ra) = Φa(ra) − Φ(0)
a (ra) is the potential in Va due to fixed gas-phase ∆ρ(r).

The quadrupole moment of π-electrons is the leading term in ∆ρ(r) for nonpolar conjugated
molecules. Charge-quadrupole corrections to polarization energies in acenes have been evalu-
ated by Munn [12] using the method of submolecules [2, 3].

Electronic polarization requires changes in ρa
G(r) due to Φa(ra), which in turn depends on

the charge distribution. Perturbation theory in Φa(ra) is not yet practical for large molecules.
In solid-state models or semiempirical theory, the discrete potential Φa(ra

i ) at atom i is a
site energy that controls the electron count. Variations of discrete potentials in I yield the
atom-atom polarizability tensor Πij that governs charge flow between atoms i and j. The self-
consistent, discrete solution of electronic polarization in I is based on INDO/S [13] for Πij and
Löwdin atomic charges ρ

a(0)
k in (2). The exact polarizability tensor α of an isolated molecule,

which in principle follows from ρG(r), differs from αC based on INDO/S atomic charges
ρ(0)(r). Induced atomic dipoles µa

i are generated by the difference α̃ = α − αC =
∑

i α̃i. We
obtain self-consistent atomic charges ρa

i and induced dipoles µa
i at all ra

i in the crystal lattice,
and designate the resulting self-consistent potential as φa

i = φa(ra
i ).

The discrete self-consistent solution neglects ∆ρ(r) and hence the potential ∆Φa(ra),
whose first-order contributions are found below. The central approximation of no intermolec-
ular overlap remains and is also assumed for submolecules [2,3]. In that approach, α is
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partitioned equally among centers and induced dipoles are found self-consistently. In terms
of I, submolecules correspond to α̃ = α and there is no charge redistribution (Π = αC = 0).

To first order, we couple the additional potential ∆Φa(ra) to self-consistent charges and
dipoles that are not re-optimized. The polarization energy of the lattice changes by

E(1) =
∑

a

∑
i

(
ρa

i + µa
i .∇)

∆Φa

(
ra

i

)
. (3)

The general expression includes atomic multipoles through ∆Φa(ra) without having to specify
individual contributions. We find ∆Φa(ra) in two representative organic molecular crystals.
The polarization energy in I is the difference between two extensive quantities, a lattice with
ions and a neutral lattice. We evaluate E(1) in both cases to obtain the correction P

(1)
+ or

P
(1)
− to the polarization energy of a cation or anion.

Crystal potential of atomic multipoles. – The best-studied organic crystals contain al-
ternant hydrocarbons such as acenes, perylenes, or polyenes [1, 2]. The molecules have an
inversion center that is often retained in the crystal. The electric field then vanishes by sym-
metry at the center of mass (c.m.), taken as the origin in (1), and Φa(0) is a saddle point in view
of Poisson’s equation. More recently, organic devices have focused on perylenetetracarboxylic
dianhydride (PTCDA) [14] and α-sexithiophene [15], which have an inversion center but are
not alternant. In Hückel theory, alternant hydrocarbons have ρ

a(0)
i = 0 and the crystal po-

tential (1) is due exclusively to higher moments. Correlated π-electrons in Pariser-Parr-Pople
theory also yield ρ

a(0)
i = 0 in systems with electron-hole symmetry [16]. Small ρ

(0)
i are gener-

ally found in acenes and the negligible potential (1) based on (2) is then incorrect. In PTCDA,
the CO dipoles have substantial ρa(0)

i and heteroatoms lead to finite atomic charges in general.
To illustrate atomic multipoles, we evaluate Φa(0) and Φ(0)

a (0) for anthracene [17] and
PTCDA [18] crystals. Both have Z = 2 and molecules with c.m. at inversion centers. The
molecules are crystallographically equivalent, in contrast to inequivalent pentacenes in that
crystal. It is convenient to view (1) for Φa(ra

i ) as the sum over potentials φa
G(r

b
i ) at rb

i due
to molecule a. Thus Φa(0) is a sum over lattice vectors connecting the c.m.’s. Two sums are
needed for pentacene crystals. To evaluate Φa(ra

i ) at atomic positions, we sum over φa
G(r

b
i ) for

b �= a. The crystal is an infinite grid that we truncate by choosing M molecules whose c.m. are
closest to the origin, so that M → ∞ yields a spherical portion of the infinite crystal. We take
Löwdin atomic charges in (2) based on INDO/S and approximate ρG(r) by density-functional
theory (B3LYP) [19] with a substantial basis (6-311++G(d,p)).

The solid lines in fig. 1 depict Φa(0) vs. M in anthracene and PTCDA crystals for the
B3LYP charge distribution ρG(r) of neutral molecules. The dashed lines are Φ(0)

a (0) for the
INDO/S atomic charges, which are indeed negligible for anthracene. All lines become constant
by M > 500. Since we have neutral molecules with D2h symmetry, the leading term is the
molecular quadrupole. Increasing M adds approximately spherical shells whose contributions
vanish, as follows analytically on performing the angular integration over a uniform quadrupole
density. Molecular quadrupoles have a divergent, shape-dependent contribution that vanishes
for spherical crystals. The potentials in fig. 1 are primarily due to nearby molecules. Atomic
multipoles yield corrections of ∆Φ(0)

a (0) = −0.18V in anthracene and −0.62V in PTCDA.
Since a charge q at the origin has energy q∆Φ(0)

a (0), the anthracene result agrees with the
charge-quadrupole energy of −0.168 eV for a point charge and submolecules at the ring cen-
ters [20].

The correction E(1) in (3) requires ∆Φa(ra
i ) at atomic positions. Their M -dependencies

are similar to fig. 1. We evaluate ∆Φa(ra
i ) at M = 1000 for all atoms and show the results
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Fig. 1 – Electrostatic potential Φa(0) in anthracene and PTCDA crystals at the center of the molecule
at the origin of a spherical cluster of M molecules. Solid lines are based on eq. (1) and density-
functional theory for ρG(r). Dashed lines are based on INDO/S atomic charges in eq. (2). The
difference ∆Φa(0) is the collective contribution of higher atomic multipoles.

in fig. 2 as ∆Φa(ra
i ) − ∆Φa(0) for anthracene and PTCDA. The lower symmetry of the

crystal potential is evident, with an inversion center at the c.m. instead of D2h symmetry.
Negative ∆Φa(0) leads to negative ∆Φa(ra

i ) at atoms i in the π-region of either crystal. In
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Fig. 2 – Atomic multipolar potential, ∆Φa(r
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i )−∆Φa(0) in volts, at atom i in anthracene and PTCDA

crystals. Each molecule has an inversion center.
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anthracene, ∆Φa(ra) increases along the long (L) axis and decreases along the medium (M)
axis. In PTCDA, ∆Φa(ra) increases along both L and M, but has negative curvature along
the normal (N) axis as follows from CO dipoles in the molecular plane. The variations of
∆Φa(ra

i ) are small in either case, especially in the central region where atomic charges change
on removing or adding a π-electron. The gradients of ∆Φa(ra) are consequently small. They
couple in (3) to induced dipoles µa

i that go as α̃ = α − αC and are ∼ 10% corrections to
charge redistribution. Although straightforward, the evaluation of three numerical derivatives
for the second term of E(1) is lengthy and is a correction to a correction. We evaluate only
the larger charge-redistribution terms ρa

i in (3).

Polarization correction for molecular ions. – The potential ∆Φa(ra
i ) is generated by

∆ρ(r) = ρG(r) − ρ(0)(r) for a crystal of neutral molecules. The polarization energy P± of a
molecular cation or anion is found in I as the difference between a lattice with an ion and a
neutral lattice. We suppose molecule u to be the ion, with gas-phase charge densities ρ±(r)
and ρ

(0)
± (r) computed as before. The crystal potential at atoms of a due to gas-phase charges

is modified by the ion and (1) becomes

Φu
a(r

a
i ) = Φa(ra

i ) + (1− δau)∆φu
G(r

a
i ). (4)

There is no change at a = u. At other molecules, the change ∆φu
G is the potential due to

ρ±(r) − ρG(r) at u; the leading term is monopolar. A similar expression holds for atomic
charges and for ∆Φu

a(r
a
i ), which is the atomic multipolar contribution when u is a molecular

ion. Since point charges are exact for monopoles and approximate for multipoles, ∆Φu
a(r

a
i )

is entirely due to different atomic multipoles of molecules and molecular ions. Similar ∆ρ(r)
are expected in large molecules and ions whose π-electron count differs by one, and refined
electronic structure computations would be needed to obtain reliable differences in anthracene
or PTCDA. When such multipolar corrections are neglected, we have ∆Φu

a(r
a
i ) = ∆Φa(ra

i )
and no dependence on the location of the ion.

E(1) in (3) is a sum over self-consistent atomic charges when the dipole term is neglected.
The difference leading to P

(1)
± is a similar sum. The a = u term has ρ±i for the lattice with

the ion and ρu
i for a neutral crystal. The potential is ∆Φa(ra) in either case and gives the

largest contribution to P
(1)
± ,

ε
(1)
± =

∑
i

∆Φu

(
ru

i

)[
ρ±i − ρu

i

]
. (5)

We obtain ε
(1)
+ = −0.27 eV for anthracene using self-consistent atomic charges of the cation.

The anion correction is 0.28 eV. The PTCDA results are ε
(1)
+ = −0.27 eV for the cation and

0.31 eV for the anion. Heteroatoms lead to ions with different charge distributions. The E(1)

terms with a �= u in (3) have different multipolar potentials: ∆Φu
a(r

a
i )ρ

a
i in the lattice with

the ion and ∆Φa(ra
i )ρ

a
i in the neutral lattice. In the approximation of unchanged higher

multipoles for ion discussed below (4), we have

P
(1)
± = ε

(1)
± +

∑
i

∆Φa(ra
i )

∑
a

′ [
ρa

i − ρa
i

]
(6)

for a �= u. The sum represents interactions between higher atomic multipoles and the total
redistributed charges ρa

i at atom i of all molecules. The same coefficient ∆Φa(ra
i ) appears

in (5) and (6), but the self-consistent charges in (5) sum to ±1 for the ion while those in (6)
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sum to zero for molecules. Since ρa
i → ρa

i far from the ion, contributions of distant sites are
negligible and the sum is conveniently evaluated for a sphere of M ∼ 1000 molecules.

The two terms in (6) have opposite signs for both cations and anions in either anthracene
or PTCDA. The first-order correction is P

(1)
+ = −0.14 eV for the PTCDA cation and P

(1)
− =

0.18 eV for the anion. In contrast to acenes [2,3], holes and electrons have different multipolar
contributions and a correction of 40meV appears in the transport gap, which goes as P+ +
P−. The anthracene results are P

(1)
± = ±0.25 eV for the anion and cation, respectively, and

the second term of (6) is a small correction to ε
(1)
± . In π-electron theory, the electron-hole

symmetry of anthracene ensures that ρa
i = 0 in the molecule and ±ρa

i in the ions [16]. The
polarization energies of electrons and holes then differ only in sign. Electron-hole symmetry
does not apply to all-electron calculations, but its consequences survive whenever π-electrons
are a good approximation.

P
(1)
± is the correction to the self-consistent polarization energy P± of a molecular ion found

in I. The charge-quadrupole correction [2, 3] Wq−Q is the submolecular limit of (5). Fixed
molecular quadrupoles for anthracene, computed separately and scaled to benzene data, lead
to Wq−Q = −0.18 eV for charges q/3 at the ring centers [12]. While direct comparisons
would require identical α’s, submolecules and charge redistribution clearly yield comparable
corrections and the charge-quadrupole interaction is the largest correction in anthracene.

In terms of submolecules, the second term of (6) corresponds to interactions between
induced dipoles and higher multipoles that, to our knowledge, have not been evaluated previ-
ously. Multipole–induced-dipole interactions are small in anthracene and presumably in other
acenes, but they are substantial in PTCDA, about half of the multipole-charge term.

The treatment of electronic polarization in I holds for organic molecular crystals in general
when intermolecular overlap is neglected and yields self-consistent results for discrete atomic
charges and potentials. Experimental comparisons to date are to the optical dielectric tensors
of anthracene and PTCDA [21]. The procedure is applicable to crystalline thin films and
accounts for the variation of the PTCDA transport gap, Et, with film thickness on gold or
silver substrates [22]. Since Et goes as P+ + P−, multipolar corrections cancel in acenes
as found previously using submolecules [1, 2], but not in PTCDA or other molecules with
heteroatoms. The transport states of crystalline thin films are critical for electronic organic
devices that depend on currents, electronic polarizations at surfaces and interfaces provide
many applications. Theoretical comparisons to submolecular results for P+, P− and the
binding energy V (r) of a cation-anion pair at separations r are discussed in I. The agreement
is best with the choice of the largest number of submolecules. With discrete atomic charges and
potentials, the self-consistent computation of charge redistributions becomes practical. First-
order corrections to polarization energies due to atomic multipoles can also be found in general.

In summary, the correction E(1) in (3) includes atomic multipole contributions to elec-
tronic polarization found self-consistently using discrete atomic charges, induced dipoles and
potentials in molecular crystals with zero intermolecular overlap. All higher multipoles are
included in ∆Φa(ra), which is seen in fig. 2 to be a slowly varying potential in crystalline
anthracene and PTCDA. The correction P

(1)
± is ±0.25 eV for an anthracene anion and cation,

respectively, −0.14 eV for PTCDA+ and 0.18 eV for PTCDA−.
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