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Optical properties of large arrays of isolated quantum dots are discussed in order to interpret the existent
photoluminescence data. The presented theory explains the large observed shift between the lowest emission
and absorption energies as the average distance between the ground and first excited states of the dots. The line
shape of the spectra is calculated for the case when the fluctuations of the energy levels in quantum dots are
due to the alloy composition fluctuations. The calculated line shape is in good agreement with the experimental
data. The influence of fluctuations of the shape of quantum dots on the photoluminescence spectra is also
discussed.@S0163-1829~96!04227-0#

I. INTRODUCTION

Reduced-dimensionality structures are currently attracting
much attention.1–4 Modern technology made it possible to
create nanoscale zero-dimensional structures where motion
in all directions is quantized~quantum dots!. Often a system
represents a large array of independent quantum dots. Be-
cause of extremely small dimensions, the fluctuations of pa-
rameters of individual quantum dots become an important
factor since they determine the properties of the whole array.

This paper was initiated by the experimental work Ref. 1,
where photoluminescence~PL! and photoluminescence exci-
tation ~PLE! experiments were performed with an array of
self-assembling quantum dots. The conventional nonselec-
tive ~with above-barrier excitation! PL reveals a broad peak
of about; 50 meV in width. This width originates from a
wide spread of energies of different quantum dots in the
array. Both PLE and selectively excited PL spectra~when
only the quantum dots that are in resonance with incident
light are excited! show sets of broadened peaks with 2–3
times smaller widths. These peaks correspond to the distri-
bution of energy levels in the subset of quantum dots that are
resonantly excited. It was observed that the first PLE peak is
strongly shifted from the detection energy. The origin of this
shift remained unclear. Moreover, no measurable Stokes
shift was observed in a recent paper Ref. 3, where the PL has
been measured together with the direct absorption by the
layer of quantum dots.

In this paper a simple theory of the PL from an array of
quantum dots is developed. We suggest that the process of
photoexcitation of a dot into its lowest optically excited state
does not contribute to the PL signal. The proposed interpre-
tation of the experimental data explains the large Stokes-like
shift between the PL and PLE peaks as the average distance
between the two lowest optically excited states.

It is suggested that the PL and PLE line shapes are com-
pletely determined by the statistical distribution of the en-
ergy levels of different quantum dots in the array. More pre-
cisely, it is determined by the distribution ofpairs of energy
levels. It is shown that such a distribution is essentially two
variable. That is, there exists a correlation in the positions of
different energy levels in each quantum dot throughout the
array, however, such a correlation is not 100%. We show

that this feature causes the difference in the positions of the
maxima of the PL and PLE spectra.

The fluctuations of energy levels due to the random po-
tential caused by the alloy composition fluctuations are stud-
ied in Sec. IV. We show that the major part of the observed
linewidth can be accounted for by this mechanism. We also
suggest that the first two excited states observed in Ref. 1
originate from the twofold degenerate first excited level,
when the degeneracy is lifted by the random potential. The
density of states and the two-level distribution function,
which accounts for the correlation in energy-level positions,
are calculated. The spectra determined by these functions
describe most of the features of the experimental spectra.

Finally, the effects caused by fluctuations of theshapeof
the quantum dots are discussed. It is suggested that the fluc-
tuations of the shape of the dots should increase the energy-
level correlation.

II. ORIGIN OF THE STOKES-LIKE SHIFT

In the present paper we consider the case when both the
electron and the hole are confined in the quantum dot. En-
ergy of the quantum dot is measured from the unexcited state
of the dot with no electrons and holes. The term ‘‘ground
state’’ refers to the ground state of the quantum dot with an
excited electron-hole pair, i.e., to the lowest optically excited
state.

The key feature of an array of quantum dots that differ-
entiates it from a quantum well or bulk material is that there
is no charge transfer between the dots, or at least such trans-
fer is strongly suppressed. Different quantum dots therefore
give independent additive contributions in any optical
experiment.5

The density of states for each quantum dot represents a set
of d-function-like peaks, while the total density of states of
the whole system can be spread in a wide energy range due
to the inhomogeneous broadening. Several experiments have
been reported recently where the contributions to the lumi-
nescence fromsingle quantum dots were found.2–4,6 Single
quantum dots give extremely narrow sub-meV spectral lines.
When, however, the number of excited quantum dots is
large, a broad luminescence peak is observed.1,3,4

We suggest that such a feature makes it difficult to probe
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optically the ground states of the dots and thus causes an
apparent Stokes-like shift observed in Ref. 1. Probing of the
ground states of the dots may require a special technique
such as, e.g., time-resolved PL.

Indeed, let us consider the contribution to the PL from the
process when the photon is absorbed into the ground state of
a dot and then reemitted. If the optical process is not phonon
assisted, the energies of the incoming and outgoing photons
are exactly equal. The PL response can hardly be observed
since it is hidden by the incident beam scattered by other
elements of the experimental environment. This situation is
quite different from that in quantum wells or bulk semicon-
ductors, where an electron excited to the conduction band
always has quantum states with lower energies. It can lose
some energy before it recombines in anindependentoptical
process.

In a quantum dot, the emitted photon may have its energy
below ~or above! that of the exciting light if the PL is pho-
non assisted. However, the phonon must be emitted~ab-
sorbed! together with the photonin the same quantum pro-
cess. The probability of such a process is determined in
higher-order perturbation theory in the electron-phonon cou-
pling constant and is therefore much smaller than the prob-
ability of the direct transition.

In order to give a substantial contribution to the PL signal,
the dot must be pumped into one of itsexcitedstates. There-
fore, the minimum distance between the excitation and de-
tection energies seen in the spectra is equal to the distance
between the ground and first excited states of the dot. In fact,
no Stokes shift was found between the PL and the direct
absorption by a layer of quantum dots measured in Ref. 3.

III. POSITIONS OF PEAKS IN THE PL
AND PLE SPECTRA

In this section the shape of the PL and PLE spectra is
described qualitatively. Different peaks observed in the spec-
tra are assigned. It is shown that the existence of a random
spread of interlevel distances in quantum dots causes sub-
stantial deviations of the positions of peaks seen in PLE and
selectively excited PL spectra.

We shall assume for simplicity that the energy relaxation
in a quantum dot occurs faster than recombination, so that
the light is always emitted from the ground state of the dot.

Let us first consider a simple model when the distances
between different energy levels are the same for all quantum
dots, however, there is a wide distribution of energy levels in
the array. In other words, let the picture of energy levels be
the same in each quantum dot but shifted randomly as a
whole. This implies a 100% correlation in the positions of
different energy levels in each dot.

If the conventional PL technique is used so that the pump-
ing is performed with energies well above the barriers be-
tween the dots, all the dots are excited and emit light at their
ground-state energies. The emission then represents a broad
peak due to the wide distribution of the ground-state ener-
gies.

Let us now consider PLE and selectively excited PL mea-
surements. Here only those dots are excited that have one of
their energy levels in resonance with the exciting light. As
suggested above, the dots pumped into their ground states do

not contribute to the spectra. When the interlevel distances
are the same in all dots, both PLE and selectively excited PL
spectra would show a set ofd-function-like peaks as
sketched in the Fig. 1.

It is more convenient to start with the PLE~left!. By
fixing the detection energy one selects the subset of all quan-
tum dots in the array with the ground-state energy
E05Edetector~we have assumed that the light is always emit-
ted from the ground state of the dots!. The PLE signal ap-
pears when the excitation energy matches the energy of an
excited state (Elaser5E1 , E2 , etc.! in the selected subset.
Thus the first observed~lowest in energy! PLE peak corre-
sponds to thefirst excited energy levels of such dotsthat have
their ground-state level at the detection energy.

The analysis of the selectively excited PL~right! is some-
what more complicated but similar. The fixed energy of ex-
citation selectsseveralsubsets of all quantum dots such that
E15E laser, E25Elaser, etc. A nonzero PL signal appears
when the detection energy matches the ground-state energy
of one of the subsets. The position of the first observed PL
peak~highest in energy! thus corresponds to theground-state
energy of such dotsthat have theirfirst excitedenergy level
at the excitation energy. The distance between the first two
PL peaks is equal toE21, the distance betweenthe first and
the secondexcited states of the dots.

When interlevel distances are the same in all dots, all
distances between different peaks in the PL~PLE! series also
remain the same, while the whole picture shifts with the shift
of the laser~detector! energies. It means that the positions of
these peaks being plotted against the laser~detector! energies
must form a set of straight lines with the unit slope.

The slopes of such lines obtained from the PLE and se-
lectively excited PL spectra obtained in Ref. 1 are all less
than 1. For the first PL and PLE peaks, e.g.,
dEmax,1

PL /dElaser50.91, dEmax,1
PLE /dEdetector50.77.1

It is easy to see that such a deviation cannot be attributed
to the dependence of the interlevel distances on the ground-
state energy. Indeed, in this case the slopes obtained from the
PL and PLE spectra should be inverse of each other. We see,
however, that

dEmax,m
PL

dElaser
ÞS dEmax,mPLE

dEdetector
D 21

. ~1!

FIG. 1. A schematic diagram of the PLE and selectively excited
PL intensities when interlevel distances in all quantum dots are the
same. Each curve is the spectrum taken at fixed excitation energy
~PL! or fixed detection energy~PLE!, which are denoted by plusses.
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We show below that the existence of a spread of interlevel
distances in the array causes deviation of the positions of
peaks seen in the PL and PLE spectra in such a way that both
derivatives in Eq.~1! become less than 1.

To demonstrate this, let us assume that the interlevel dis-
tances in the dots fluctuate randomly in some~narrow! en-
ergy interval. In this case selection of a subset of quantum
dots by fixing one of the energy levels does not yet deter-
mine the positions of other energy levels. Then one should
observe a sequence of broadened peaks in both PL and PLE.
The scale of broadening is determined by the distribution of
interlevel distances only, therefore it can be narrower than
the distribution of the absolute energies. As shown below
such behavior is natural if the spread is caused by a random
potential.

To understand how thepositions of maxima of the broad-
ened peaksare shifted, it is convenient to draw a three-
dimensional picture shown in Fig. 2. Here the intensity mea-
sured by the detector is plotted as a function of two variables
— the excitation and the emission energies. Clearly, such a
plot contains all information, which both PL and PLE can
provide. To get the shapes of the PL or PLE spectra one
simply has to slice the three-dimensional plot along the
Elaser or Edetectoraxis.

First, the intensity is zero in the half-plane
Elaser,Edetector. The intensity is nonzero only whenElaser
and Edetector are in resonance with the excited and ground
states of some dotsimultaneously. If the spread of interlevel
distances is small, the three-dimensional plot has a shape of
a set of narrowridges, elongated in the direction parallel to
the lineElaser5Edetector. Each ridge corresponds to the opti-
cal process for whichEdetector5E0 andElaser5Em , m51,2,
etc. The width of each ridge is determined by the spread of
the corresponding interlevel distances, while the length is
larger and represents the large spread of the ground-state
energies. The distance between the ridge and the line
Elaser5Edetector is determined by the average distance be-
tween the ground and the corresponding excited states of the
dots.

The inset in Fig. 2 shows a fragment of the same plot in
the isoline projection~dashed lines!. Crosses and plusses
show the positions of the maxima in the PL and PLE cross
sections, respectively. The ‘‘PL and PLE lines’’ are the loci
of the maxima observed in the PL and PLE spectra.

As one can see, the positions of the maxima deviate from
the major axis of the ridge and from each other. Indeed, these
positions lie in such points where the cross-section line~par-
allel to one of the axes! is tangential to the lines of equal
intensity. Note that the deviation of the positions of the
maxima is such that both derivatives in Eq.~1! are less than
1.

Both lines intersect exactly at the maximum of the ridge,
the coordinates of which give the average positions of the
ground and the excited states of all the dots in the array.

In general, if the oscillator strengths are the same for all
allowed transitions, the intensity as a function of the excita-
tion and detection energies is proportional to the mutual
level-level distribution function: I (Edetector,Elaser)
}(mP(Edetector5E0 ,Elaser5Em), whereEm are the energy-
level positions,E0 being the position of the ground state. In
Sec. IV we derive the shape of the distribution function
P(E0 ,Em) when the spread of the energy-level positions is
caused by the composition fluctuations. We show that a quite
complicated PL and PLE line shape observed in Ref. 1 can
be sufficiently well described in this way.

IV. FLUCTUATIONS OF ENERGY LEVELS
IN QUANTUM DOTS

In this section we study the properties of the statistical
distribution of the energy levels in quantum dots caused by a
white-noise random potential. We present strong evidence
that the major part of the observed spread of the PL and PLE
peaks is caused by universal composition fluctuations in the
dots. These fluctuations are a generic property of semicon-
ductor alloys and produce a theoretical limit for unification
of quantum dots in an array.

We also suggest that the first two excited levels that re-
veal themselves in the PLE and selectively excited PL ex-
periments originatefrom a single doubly degenerate level
when the degeneracy is lifted by the random potential.

In semiconductor alloys the lattice sites are occupied ran-
domly with two types of substitutional atoms. We ignore
here the correlation between occupation of different sites.
The compositionx averaged over a small volume always
fluctuates. The order of magnitude of the fluctuations is in-
versely proportional to the square root of the volume over
which the averaging is performed. Though usually small, this
effect can be important in extremely small structures.

In small quantum dots such composition fluctuations
cause shifts of energy levels from the positions determined
by the average compositionx0 . The ‘‘local’’ compositionx
varies from dot to dot, and alsoinside the dot. According to
that, the energy levels fluctuate from dot to dot. Shifts of the
energy levels in different quantum dots are independent of
each other. Inside a single quantum dot the shifts of different
energy levels are correlated. Note, however, that such corre-
lation is not 100%~as it would be if there was only one
fluctuating parameter such as the diameter of a dot!.

In order to calculate the statistical distribution of energy

FIG. 2. A schematic shape of the intensity as a function of the
excitation and detection energies for the system with two excited
states. The left ‘‘ridge’’ corresponds to the absorption by the first
excited states of the dots. The ‘‘PL’’ and ‘‘PLE lines’’ in the inset
are the loci of the positions of the maxima of intensity in the PL and
PLE cross sections, respectively. The dashed lines show the lines of
equal intensity. The maxima in a cross section occur at such points
where the cross section lines~horizontal and vertical solid lines! are
tangential to the lines of equal intensity.
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levels caused by composition fluctuations we use the method
developed by Efros and Raikh~for a review see Ref. 7!. This
method is applicable if the size of the wave function is much
larger than the lattice constant. In this case one needs to
know only the shape of the wave function in a quantum dot
and the slope of the dependence of the gap on composition,
dEg /dx, at average compositionx0 .

The result depends on whether the unperturbed energy
levels are degenerate or not. Without degeneracy the distri-
bution of energy levelsEm is Gaussian with the standard
deviation given by

sm
2 5em

2 5gE d3rcm
4 ~r !, ~2!

whereem5Em2Ēm , cm is the wave function~real! corre-
sponding to the energy levelEm , andg is given by

g5S dEgdx D 2 x0~12x0!

N
, ~3!

whereN is the number of lattice sites per unit volume.
The covariancebetweenem and en can be obtained in a

similar way:

emen5rsmsn5gE d3rcm
2 ~r !cn

2~r !. ~4!

The coefficientr, r<1, is called the coefficient of correla-
tion betweenEm andEn .

To find the shape of the PLE and selectively excited PL
spectra we need the mutual distribution function forE0 and
Em . The most general form of the two-variable Gaussian
distribution is given by

G2~e0 ,em ;s0 ,sm ,r!5
1

2ps0smA12r2
expH 2

1

2~12r2! F e0
2

s0
2 22r

e0em
s0sm

1
em
2

sm
2 G J . ~5!

This is just an analytical expression for the shape of the
ridge, discussed in the previous section. The ridge is strongly
elongated when the parameterr is close to 1. It is equal to 1
in the limiting case when an exact relation between the
energy-level positions exists, so that the two-variable statis-
tical distribution becomes effectively one-variable. The ratio
sm /s0 determines the orientation of the ridge. The ridge is
parallel to the lineElaser5Edetectorwhensm5s0 .

The situation is, however, more complicated if a degen-
eracy exists. The random potential shifts the degenerate en-
ergy level and lifts the degeneracy. The distribution of ener-
gies in the vicinity of an unperturbed degenerate level
appears to be not Gaussian. The mutual two-variable distri-
bution function for a transition betweenE0 and Em is not
Gaussian either. Instead, it has a shape of two close parallel
ridges corresponding to each of the split-off energy levels.

For simplicity we restrict ourselves to the axially symmet-
ric quantum dots, where each energy level except the ground
state is doubly degenerate. In this case it appears to be pos-
sible to derive the general form of the distribution function
without knowledge of the shape of the wave functions in the
quantum dot.

For an axially symmetric system two degenerate wave
functions with the angular momentumumu have the form
cm6(r )5cm(r )e

6 imf, wherecm can be made real. The po-
sitions of energy levelsEm6 , split and shifted by the random
potential of the particular configuration, can be obtained as
the eigenvalues of the secular matrix

dH5F u x1 iy

x2 iy u G , ~6!

where the matrix elementsu andx1 iy take random values
in each quantum dot and are given by

u5E d3rV~r !cm
2 ~r !, ~7a!

x1 iy5E d3rV~r !cm
2 ~r !e2imf. ~7b!

HereV(r ) is the white-noise random potential with correla-
tor ^V(r )V(r 8)&5gd(r2r 8).

Eigenvalues ofdH are e65u6Ax21y2 ~the energy is
measured from the unperturbed energy level!. It is easy to
see thatu, x, andy are independentGaussian random vari-
ables withu25sm

2 , x25y25sm
2 /2, sm

2 being given by Eq.
~2!.

The density of states in the vicinity ofEm ~the distribution
function for em5Em2Ēm) is given by

P~em!5(
6

E E E du dx dyd~em2u7Ax21y2!

3G1~u;sm!G1S x; sm

A2DG1S y; sm

A2D
5D0~em ;sm!, ~8!

whereG1 is the standard one-variable Gaussian distribution,
G1(e;s)[s21G1(e/s;1),G1(z;1)5(2p)21/2 exp(2z2/2);
and we have introduced the notation for the distribution
functionD0(e;s)[s21D0(e/s;1),

D0~z;1!5
2

3
A2

p
e2z2/21

2z

3A3
e2z2/3erfS z

A6D . ~9!

The meaning of the index 0 inD0(e;s) will soon become
clear.

Equation~9! describes a bell-shaped curve, which deter-
mines the density of states and, hence, theabsorption spec-
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trum in the vicinity of the excited levelEm . Its shape can be
fairly well approximated by a Gaussian with the effective
dispersionseff5smA2, as shown in Fig. 3.

In order to find the mutual two-level distribution function
that determines the shape of the PL and PLE spectra it is
important to account for the correlation between matrix ele-
ments ofdH and the shift of the ground statee0 .

It is useful to note that the expression for the matrix ele-
mentu is the same as the expression for the shift of a non-
degenerate level with the wave functioncm(r ). The value of
u is, therefore,correlatedwith e0 via the same two-variable
Gaussian distribution as in Eq. ~5!: P(e0 ,u)
5G2(e0 ,u;s0 ,sm ,r), with the parameterss0 , sm , andr
given by Eqs.~2! and~4!. The parametersx andy are statis-
tically independent ofe0 and u because the corresponding
covariances become zero when the integration over the azi-
muthal anglef is performed. Thus, we obtain

P~e0 ,em!5(
6

E E E du dx dyd~em2u7Ax21y2!

3G2~e0 ,u;s0 ,sm ,r!G1S x; sm

A2DG1S y; sm

A2D
5G1~e0 ;s0!DrS em2e0r

sm

s0
;smD , ~10!

where the functionDr(e;s)[s21Dr(e/s;1), and

Dr~z;1!5
2Am21

Apm
expS 2

z2

m21D
1

2z

m3/2expS 2
z2

m D erfF z

Am~m21!
G . ~11!

Herem5322r2. The functionD0(e;s) defined by Eq.~9!
is a particular case of~11! with r50.

The functionDr(em ;sm) gives the distribution of the en-
ergy sublevels in the vicinity ofĒm , whenthe position of the
ground state is fixed. It is normalized in such a way that
*de Dr(e;s)52 ~according to the twofold degeneracy!, and

*de e2Dr(e;s)52s2(22r2). The function Dr(e;s) is

symmetric ine. It has one maximum whenr<1/A2 and two
maxima, whenr.1/A2. The maxima become more pro-
nounced whenr tends to 1.

The functionP(e0 ,em) determined by Eq.~10! gives the
probability density for a quantum dot to have the ground
state at the energyĒ01e0 and an excited state at the energy
Ēm1em . It is proportional to the intensity measured by the
detector at fixed excitation and detection energies. Hence, it
determines the shape of both PL and PLE spectra when the
proper argument is fixed.

The functionP(e0 ,em) appears to be not very sensitive to
the ratiosm /s0 . It is, however, quite sensitive to the value
of the correlation coefficientr. This function is plotted in
Fig. 4 for sm5s0 and two different values ofr. As shown
in Sec. V, it is natural for the coefficientr to be close to 1.
The valuer50.94@Fig. 4~a!# gives the best fit to the experi-
mental data. Whenr tends to 1@Fig. 4~b!# the intensity in the
dip between two maxima approaches zero. The line shapes
of the spectra described by Eq.~10! are discussed in detail in
Sec. V.

V. DISCUSSION

We replot the positions of the PL and PLE maxima ob-
served in Ref. 1 on the combined plot in Fig. 5 to illustrate
that the experimental behavior is in agreement with our con-
sideration~compare with the inset in Fig. 2!. The dotted line
shows unit slope,Elaser5Edetector. Three lines correspond to

FIG. 3. The functionD0(z;1) ~full line!, as given by Eq.~9!,
determines the density of states in the vicinity of the excited level.
The approximation by a Gaussian with an effective dispersion
~dashed line! is also plotted.

FIG. 4. The two-level mutual distribution functionP(e0 ,e1)
given by Eq.~10! is plotted for fixede050 ~the ‘‘PLE’’ curve! and
for different fixed e1 ~the set of ‘‘PL’’ curves!. The curves are
shifted upward arbitrarily to ease the reading. The correlation coef-
ficient is ~a! r50.94 and~b! r51.
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the positions of two maxima observed in each PL curve
~crosses! and one in each PLE curve~plusses!. The positions
of only one PLE maximum for eachEdetectorare shown be-
cause the second PLE maximum is not seen clearly enough.
The constant value of 1290 meV has been subtracted from
all energies.

The three lines shown in Fig. 5 are consistent with the
qualitative picture of two close parallel ridges. As suggested
above, these ridges correspond to the two optical processes
whereEdetector5E0 andElaser5E16 ; E0 being the ground-
state energy andE16 the energies of the first and second
excited states.

We use the notationE16 instead ofE1,2 for the two ex-
cited states according to the idea that they originate from the
twofold-degenerate first excited energy levelE1 when the
degeneracy is lifted by random potential. This idea is sup-
ported by the fact that the ratio of interlevel distances ap-
pears to be (Ē112Ē12)/(Ē122Ē0)'0.6. For a cylindrical
quantum well with infinite potential walls the corresponding
ratio is aboutĒ21/Ē1051.3.

The point of intersection of two lines gives the position of
the maximum of the first ridge. The difference of 55 meV in
its coordinates is nothing but the observed Stokes-like shift
between emission and absorption energies. The distance be-
tween two ridges measured along theElaser axis gives
Ē112Ē12 , the mean splitting of the excited stateE1 .

Using Fig. 5 we may conclude that the average distance
between the ground and~split! first excited state is about 75
meV, while the average splitting of the excited state is ap-
proximately 40 meV.

Figure 6 shows the comparison between the presented
theory and the experiment. The experimental spectra from
Ref. 1 are replotted in Fig. 6~a!. The theoretical PLE and
selectively excited PL spectra@Fig. 6~b!# are obtained with
the use of Eq.~10! by fixing e0 or em , respectively. Experi-

mental values for the average positions of the energy levels
Ē051276 meV andĒ151351 meV are used.

Figure 6~b! is essentially Fig. 4~a! replotted in the wave-
length scale for better comparison. The valuer50.94 gives
the best fit for the data from Ref. 1. It is seen that the curves
obtained reproduce all the features of both PL and PLE spec-
tra.

The structure of the expression~10! is such that ife0 is
fixed, it describes a curve symmetric around the point
em5e0rsm /s0 . Thus~if r.1/A2) the PLE line should re-
veal two symmetricpeaks at any detection energy. This is
exactly the behavior seen in the experiment. When the de-
tection energy is changed, the whole spectrum must shift
linearly with it. Indeed, Fig. 5 shows that the positions of
PLE maxima depend linearly on the detection energy. The
slope of the PLE curve in Fig. 5 gives the ratios1 /s0 ,
which appears to be close to 1.

If the position of the excited levelem is fixed, the line
shape is asymmetric. Whenr is close to 1, the PL line shape
also shows two maxima, however, there is a peculiar inter-
play in their magnitudes when the excitation energy is
changed. This also matches the experimental data quite well.

Such an interplay can be understood easily. The first~sec-
ond! PL maximum corresponds to the distribution of ground-
state energies of such a subset of quantum dots, for which

FIG. 5. The positions of the PL~crosses! and PLE ~plusses!
maxima taken from the spectra in Ref. 1 are shown in the combined
plot. The resulting crossing lines make clear how the positions of
maxima deviate from each other and from the major axis of the first
‘‘ridge’’ ~dashed line!. The cross-section point is the maximum of
the ridge. The second set of the PLE maxima is not shown because
the corresponding peaks are seen not very clear in the spectra. A
constant value of 1290 meV has been subtracted from all energies.
The dotted line shows the unit slope,Elaser5Edetector.

FIG. 6. ~a! The experimental data from Ref. 1 replotted for
comparison. The upper curve is the PLE spectrum obtained with the
detection energy marked by an arrow. Plusses above the PLE spec-
trum show the fixed excitation energies for each of the PL spectra.
The curve 9 corresponds to the above-barrier excitation energy.~b!
The PLE and selectively excited PL line shapes obtained from Eq.
~10! with parametersr50.94, s05s1519 meV. Average energy
positions of the ground and first excited energy levels are

Ē051276 meV andĒ151351 meV.
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the lowest ~highest! split-off level coincides withElaser.
WhenElaser is belowĒm , the amount of the first type of dots
is larger than that of the second type. WhenElaser is larger
than Ēm , the dots of the second type prevail.

The interplay is absent in PLE, because for each fixed
ground-state energy there is always an equal amount of low-
est and highest split-off levels.

The magnitudes ofs1 ands0 can be obtained indepen-
dently as follows. Forr50.94, the maximum ofDr(e;s)
lies ate50.765s. Then, from the position of the PLE maxi-
mum, s1514.5 meV/0.765519 meV. The spread of the
ground statess0 can be determined independently from the
nonselective PL@curve 9 in Fig. 6~a!#. It gives s0518.2
meV.

If we know the shape of the wave function, we may find
the values for the parameterss0,1 andr, using Eqs.~2! and
~4!. As a guess, we may try the wave functions for the cy-
lindrical quantum well with infinite walls:

cm~r !}cosS pr'
h D JmS nmri

R D , ~12!

where h and R are correspondingly the thickness and the
radius of the quantum dot, andnm is the root of the Bessel
functionJm . The integrals of interest,Jmn5*d3rcm

2cn
2 , are

equal toJ0052.098,J1151.552, andJ0151.435.
It is easy to find all parameters in this approximation.

First, let us estimate the magnitude of the spread. To
find s0 one has to know the volume of the quantum
dot. Taking it to be the volume of the cylinder with the
thickness 2.5 nm and diameter 25 nm,1 and using the param-
eters of InxGa12xAs, x050.5, lattice constanta50.585 nm,
anddEg /dx51.16 eV ~both atx50.5),8 we obtains0513
meV. This value is less than the experimental value of 18.2
meV. It shows, however, that at least a significant part of the
spread is caused by the composition fluctuations. There are,
of course, some other reasons for spreading. The total spread,
however, cannot be less than the calculated value.

Two remaining dimensionless parameters arer50.795
ands0 /s151.16. Though the ratios0 /s1 is in reasonable
agreement with the experiment, the value of the correlation
coefficientr is significantly less than the experimental value
of 0.94. Note that the dimensionless parameters depend only
on the form of the wave functions. Though it is possible to
relate the discrepancy inr to the unknown shape of the real
wave function, there is a more serious reason for this coef-
ficient to be closer to 1.

Among the other causes of spreading of energy levels,
which are not taken into account in the presented theory,
there arefluctuations of the shapeof quantum dots. The dis-
tortion of the shape of a quantum dot, even when small,
cannot be represented as a potential perturbation in the
Schrödinger equation. Its effect on the positions and splitting
of the energy levelEm can, however, be described by an
effective secular matrixdH of the same form as Eq.~6!. The

only difference is that the matrix elementsu andx1 iy are
not described by Eqs.~7! anymore. Instead, they are deter-
mined by the integrals of the derivative of the unperturbed
wave function at the boundary of the quantum dot.9

Thus, the effect of the shape fluctuations is only in renor-
malizing the parameterss0 , sm , and r. It is important,
however, that for the case of pure shape fluctuations, the
parameterr, defined as a correlation coefficient betweenu
ande0 , is exactly equal to 1. The reason is that in an axially
symmetic quantum dot, the normal derivative of the wave
function at the boundary is just a number rather than a func-
tion of the coordinate. Therefore, there should be an exact
relation betweenu ande0 for each particular shape distor-
tion. It is natural to assume that the effective value ofr is
closer to 1 when both mechanisms are involved than in the
case of pure composition fluctuations.

VI. CONCLUSION

In the present paper a simple theory is developed, which
allows one to describe selective photoluminescence data
from an array of quantum dots with random parameters. The
theory explains a large apparent Stokes-like shift between
emission and absorption energies as the average distance be-
tween the ground and first excited energy levels in the dots.

It is shown that the existence of a random spread of the
interlevel distances in the dots causes deviation of the posi-
tions of the maxima of the peaks seen in the PL and PLE
spectra. Such deviation can make it difficult to determine the
properties of the statistical distribution of energy levels in the
array. It is suggested how the proper parameters of the sta-
tistical distribution may be obtained from the experimental
data.

The random shifts and splittings of energy levels caused
by a white-noise random potential in the dots are studied.
The density of states and mutual level-level distribution
function are obtained for the case of an axially symmetric
quantum dot. The energy-level distribution and the resulting
PLE and selectively excited PL spectra appear to be close to
that observed in the experiment~see Fig. 6!. It is shown that
the major part of the spread of energies observed in the ex-
periment originates from the random potential caused by the
composition fluctuations. It is also suggested that the random
fluctuations of the shape of the dots also contribute to the
spread.
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