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1. INTRODUCTION

The theoretical treatment of the optical properties of organic molecules with
delocalized electronic states, such as conjugated polymers, is complicated by strong
Coulomb interaction between electrons [1,2] and by polaronic e�ects reecting strong
electron-phonon interactions [3]. Both e�ects are enhanced by low dimensionality
[4,5]. The problem is complicated even for the purely electronic system, where the
coupling to nuclear degrees of freedom is neglected. This �nite many-electron problem
can be treated using approximate many-body techniques [6]. These methods can be
classi�ed into two types, depending on the way they treat the perturbation induced by
the optical �eld. The �rst is based on a variational and perturbative treatment of the
ground state in the presence of the electric �eld (for example, the Coupled-Perturbed
Hartree-Fock (CPHF) procedure [7]). The second type uses time-dependent pertur-
bation theory, which relates the optical response to the properties of excited states
e.g. the Con�guration-Interaction / Sum-over-States (CI/SOS) method [2]). An-
other example of the latter methods is the Time-Dependent Hartree Fock (TDHF)
[8,9] which works well for both the linear and the non-linear response of conjugated
polymers [10]. For linear response the TDHF is equivalent to the Random Phase Ap-
proximation (RPA). In this approach one solves equations of motion for the elements
of the reduced single-electron density matrix, which represents a set of parameters
that characterize the electronic system. As demonstrated in [11], the solutions of the
TDHF equations can be viewed as \classical trajectories" in the phase space of the
generalized coherent states [12] represented by single Slater determinants. In that
sense the TDHF provides a classical-like description of the quantum many-electron
system [11]. The terms \classical" and \quantum" used here do not refer to the con-
ventional expansion in �h but rather describe the strength of electronic correlations.
\Classical" means a system with no correlations, so that its wavefunction can be



represented by a single Slater determinant.

Infrared spectra, vibronic structure of optical spectra, and Raman scattering
depend on the combined e�ect of nuclear motions and electronic correlations. Theo-
retical investigation of these spectroscopies usually require calculation of excited state
adiabatic surfaces. This task is computationally expensive and possible only for small
molecules [13]. When the optical �eld is o�-resonant with respect to the electronic
transitions, both vibrational and electronic degrees of freedom can be treated classi-
cally. A straightforward generalization of the TDHF theory then yields a system of
coupled classical equations of motion in the joint phase space of electronic and vi-
bronic degrees of freedom. This approach, however, fails to reproduce the vibrational
structure of electronically resonant spectroscopy. For these applications a semiclas-
sical procedure needs to be developed which treats the electronic motions classically
whereas the vibrational degrees of freedom are accounted for quantum-mechanically.
This can be achieved by deriving a semiempirical e�ective quantum model where the
electronic degrees are represented by a set of weakly coupled harmonic oscillators
and whose electronic optical response reproduces the TDHF approximation for the
original system.

We propose a new semiclassical method for computing the vibronic structure
of the optical response. By treating electronic degrees of freedom in the TDHF
approximation and including vibrational degrees of freedom explicitly within the
Born-Oppenheimer approximation, we derive an e�ective Hamiltonian that describes
the coupled electronic and nuclear motions. In this paper we derive the harmonic
part of the e�ective Hamiltonian and apply it to compute the linear absorption and
uorescence spectra of small polyenes.

2. SEMICLASSICAL OSCILLATOR REPRESENTATION

OF THE ELECTRON-PHONON SYSTEM

We start with the Pariser-Parr-Pople (PPP) Hamiltonian [14] which describes
the system of �-electrons in conjugated molecules:bH =

X
�m�n

�t �m�n( bR)bcy�mĉ�n + X
�m�n�k�l

�V �m�n�k�l( bR)ĉy�mĉy�nĉ�k ĉ�l + bHnucl: (1)

Here ĉ(ĉy) are the fermionic annihilation (creation) operators. Indices with over-
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0 is the hopping matrix and �V �m�n�k�l = � �m�l��n�kVm0

n
0 represents

Coulomb interaction between electrons. The dependence of all matrix elements on

the nuclear coordinates bR describes the adiabatic interaction with the vibrational
degrees of freedom, the last term represents the vibrational Hamiltonian. The total
Hamiltonian of the system interacting with the classical external optical �eld E(r; �)
through the polarization operator P(r) is [11]

bHT (�) = bH �

Z
dr E(r; �)P(r); P(r) �

X
�m�n

� �m�n(r; bR)ĉy�mĉ�n � �0(r; bR): (2)

� and �0 in Eq. (2) represent the electronic and the nuclear dipole densities, respec-
tively. Our �rst goal is to derive an e�ective classical Hamiltonian which is a classical



function of a set of parameters (the elements of the single-electron density matrix �
as well as the nuclear coordinates R and momenta P ). This function de�ned on a
closed manifold always has a minimum, which corresponds to the stationary point
(R(0),��) of the classical dynamics for �(t) and R(t). We next introduce canonical
variables that describe the classical dynamics of the system around this stationary
point. Finally, we quantize the resulting Hamiltonian to arrive at an e�ective quan-
tum Hamiltonian that describes the coupled electronic and vibrational degrees of
freedom.

To achieve this goal we employ the scheme of [11] which is based on generalized
coherent states [12]. We de�ne the classical phase space of the systemM as the space
of coherent states; M has a form of the direct product M =M0 �M1 where M0

is the phase space of nuclear coordinates R and their conjugate momenta P . M1

is the set of single Slater determinants represented by the Grassman manifold [11]
M1 = G(M;N;C), whereM is the number of electrons and N is the number of single-
electron basis functions. M1 can be viewed as the space of N�N hermitian complex
matrices �̂ with �̂2 = �̂ and rank(�̂) = M . Therefore, a point in M is characterized
by (P;R; �̂). The Poisson bracket onM0 is canonical, the Poisson bracket onM1 is
de�ned in [11]. The classical Hamiltonian is a function on the space M of coherent
states; according to [11] its value on a coherent state � is de�ned as the expectation

value of bH on �. Following [11], we introduce a basis set �̂m of functions on M1

de�ned as �̂m(�̂) � Tr(�̂m�̂). The classical Hamiltonian then becomes:

bH(P;R) =
X
m

tm(R)�̂m +
X
mn

Vmn(R)�̂m�̂n + bHnucl(P;R); (3)

with
P(r) =

X
m

�m(r; R)�̂m � �(1)(r; R): (4)

In Eq. (3) bH(P;R) for each value of P and R is treated as a function on M1.
Expressions for the parameters tm; Vmn, and �m in terms of the original parameters
�t �m; �V �m�n�k�l, on � �m�n are given in [11]. Minimization of bH [Eq. (3)] on the phase space
M is equivalent to solving the stationary Hartree-Fock (HF) equation together with
geometry optimization.

We next choose a system of local coordinates on M in the vicinity of the sta-
tionary point. We use R and P as canonical coordinates on M0. The coordinates
on M1 are the matrix elements of �̂. The full set of matrix elements is, however,
overcomplete due to the constraint �̂2 = �̂. To de�ne a complete set of canonical
coordinates we use the decomposition of the density matrix �̂ = ��+ �̂+T (�̂) [11] into

the particle-hole part �̂ and the remainder T (�̂) that contains no particle-hole matrix
elements and constitutes a function of �.

Expanding �̂ in the eigenmodes �̂�; �̂
y
� of the Liouville operator L, L�̂� = 
���,

L�̂y� = �
��̂�, we obtain the variables which are canonical to �rst order in �̂. Ex-
pressions for the electronic Hamiltonian in terms of these variables as well as the
Liouville operator L which determines the linearized TDHF equation were given in
[11]. These can be transformed to canonical variables order by order in �̂. Denot-

ing the canonical variables bB� and bBy
�, and neglecting some unimportant constant



terms, we can recast the Hamiltonian in a form bH = bHe + bHph + bHint, where bHe is
the electronic Hamiltonian, written in terms of excitonic canonical variables

bHe �
X
�


�
bBy
�
bB� +

m+n>2X
mn

X
�1:::�m

X
�1:::�n

A�1:::�m;�1:::�n
bBy
�1:::

bBy
�m
bB�1:::

bB�n ; (5)

Hph is the vibrational Hamiltonian,

bHph � bHnucl +Tr
n
t̂(R(0) + q)��

o
+ Tr

n
��V (R(0) + q)��

o
; (6)

where q � R�R(0) is the deviation of the nuclear positions R from their equilibrium
values R(0). The nuclear Hamiltonian under the harmonic approximation can be
expanded in the nuclear eigenmodes:

bHnucl =
3K�6X
j=1

p2j
2mj

+
mj!

2
j q

2
j

2
: (7)

Here K is the number of nuclei, and qj , pj , and mj represent the coordinate, the

momentum, and the mass of the j-th nuclear mode, respectively. bHint represents the
interaction between electron-hole pairs and the vibrational modes.

bHint �
m+n>1X
mn

X
�1:::�m

X
�1:::�n

A
(1)
�1:::�m;�1:::�n

(q) bBy
�1:::

bBy
�m
bB�1:::

bB�n (8)

In Eqs. (5)|(8) we have used the notation introduced in [11]. t̂(R) is a vector in a
single-electron Liouville space, whereas V (R) is an operator in the same space (i.e.,
a superoperator).

t̂(R) �
X
m

tm(R)�̂m ; V (R)�̂ �
X
mn

VmnTr(�̂n�̂)�̂m: (9)

Expressions for the coe�cients A and A(1) will be given below. The Poisson bracket

has the canonical form fpi; qjg = �ij ,f bB�; bBy
�g = i��� , and the polarization operator

is given by

P (r) �
X
mn

��1:::�m;�1:::�n(r; R
(0) + q) bBy

�1:::
bBy
�m
bB�1:::

bB�n : (10)

We have thus succeeded in rewriting the Hamiltonian of Eq. (3) using canonical
vari*ables with classical commutation relations.

Within the classical approximation, the linear response is obtained by retaining
the harmonic terms in B̂ and B̂y in He�

bHe� =
X
�


�
bBy
�
bB� + bHph +

X
��

A
(1)
�;�(q)

bBy
�
bB�



+
X
�1�2

A(1)
�1�2;

(q) bBy
�1
bBy
�2

+
X
�1�2

A
(1)
;�1�2

(q) bB�1
bB�2 ; (11)

and linear terms in the expression for polarization:

P (r) =
X
�

��(r; q)( bB� + bBy
�): (12)

To derive the e�ective quantum Hamiltonian we quantize the simpli�ed classical

Hamiltonian given by Eqs. (11) and (12) by treating the variables p̂j , q̂j , bBy
�, andbB� in Eqs. (5) through (8) and (10) as operators with the commutation relations

that follow from classical Poisson bracket: [p̂i; q̂j ] = �i�ij , [ bB�; bBy
�] = ��� . Since

the parameters of the e�ective Hamiltonian are not changed by the quantization
procedure, they can be evaluated using the classical (TDHF) approach developed in
[11], which yields

A
(1)
�;�(q) �

1

2
Tr
nbS(q)[[�̂y�; ��]; �̂�]o+ 1

2
Tr
nbS(q)[[�̂�; ��]; �̂y�]o

+Tr
n
�̂y�U(q; �̂�)

o
+Tr

n
�̂�U(q; �̂

y
�)
o
; (13)

A(1)
�1�2;

(q) �
1

2
Tr
nbS(q)[[�̂y�1; ��]; �̂y�2]o+ Tr

n
�̂y�1U(q; �̂

y
�2
)
o

(14)

A
(1)
;�1�2

(q) �
1

2
Tr
nbS(q)[[�̂�1 ; ��]�̂�2 ]o+Tr

n
�̂�1U(q; �̂�2)

o
(15)

��(r; q) � Tr
n
[��; �(r; R(0) + q)][�̂�; ��]

o
: (16)

We have introduced the notation

U(q; �̂) � V (R(0) + q)�̂ � V (R(0))�̂; (17)

bS(q) � t̂(R(0) + q)� t̂(R(0)) + 2U(q; ��): (18)

Eqs. (11) through (18) express the e�ective Hamiltonian and the polarization in
terms of the parameters of the original Hamiltonian [Eq. (3)] and the normal modes
�� of the linearized TDHF equation. The e�ective Hamiltonian describes a system
of harmonic oscillators representing excitons interacting with phonons. The e�ective
Hamiltonian represents a quantum model which is obtained by quantizing the har-
monic (with respect to electron-hole operators) part of the classical counterpart of
the original Hamiltonian. Neglecting the anharmonic terms for the linear response is
justi�ed on the classical level only, this implies that the formally completely quantum
e�ective model constitutes a classical approximation with respect to the electronic
degrees of freedom. The formal aspects of the semiclassical approximation as well
as a systematic procedure of deriving the e�ective Hamiltonian which reproduces
optical nonlinearities is developed in [15]. The e�ective model still represents a
complicated many-body system. However, its complexity is only related to exciton-
phonon interactions; the many-body problem of electron correlations has been taken



care of within the TDHF technique, which results in the formation of excitons. Di-
rect exciton-exciton interaction will show up in nonlinear response functions only.
Eq. (11) is an important result which allows us to develop various approximations
for the system described by the e�ective Hamiltonian. First, provided the phonon
energies and the exciton-phonon interaction are much smaller than the optical gap,
the last two terms in the r.h.s. of Eq. (11) can be neglected. We can then retain

only quadratic terms in the expansion of bHph, and linear terms in the expansion

of A
(1)
�;�(q). Introducing the vibrational normal modes qj� with frequencies !� and

creation (annihilation) operators b̂y�(b̂�), we obtain the e�ective HamiltonianbH =
X
�


�
bBy
�
bB� +

X
�

!� b̂
y
� b̂� +

X
���

S��;� bBy
�
bB�(b̂� + b̂y�); (19)

where S��;� �
X
j

�A
(1)
�;�(q)

�qj
qj� : (20)

In order to treat higher-order response functions we need to retain higher-order terms
in powers of B and By in the e�ective Hamiltonian. To that end, we make use of the
expansion of the classical Hamiltonian [Eqs. (5)|(8)]. The only remaining problem is
how to order the B and By operators in the expansion (since in the classical limit they
commute). This problem can be solved in principle by starting with the canonical
Poisson bracket and extending it to canonical boson commutation relations in the
quantum case.

3. APPLICATION TO SMALL POLYENES

We have performed numerical simulations for trans-1,3,5-hexatriene and trans-
1,3,5,7-octatetraene. Starting with ab-initio restricted Hartree-Fock 6-311++G**
calculation for the ground-state vibrational normal modes. We have used the PPP
Hamiltonian Eq. (1) [10] which has been parametrized as follows: The size of basis

set ~K is equal to the number of carbon atoms. The PPP Hamiltonian contains only
the nearest-neighbor and the diagonal transfer integrals tn0

�1;n0 (R) = � � �1�r
0

n,

tn0

n
0 =

P0

m Vn0

m
0 (R), with Coulomb interaction given by Ohno's formula

Vn0

m
0 (R) =

Up
1 + (rn0

m
0=a0)2

: (21)

Here U = U0=� is the on-site Hubbard repulsion, � is the static dielectric constant,
and rnm is the distance between the n-th and m-th carbon atoms. Following [10] we
use the following values of parameters �0 = �2:4 eV, �1 = �3:0 eV�A

�1, U0 = 11:13
eV, � = 1:5, a0 = 1:2935 �A.

In Fig. 1 we show the dominant oscillator strengths f� in the linear response
of hexatriene and octatetraene. The electronic and vibrational normal modes were
used for calculating electronic-vibrational coupling matrix S��;� in Eqs. (19) and (20).
This can be recast in the following form which is suitable for numerical applications

S��;� = Tr

��
�t(R(0) + q)

2�q�
q� +

� �V (R(0) + q�)��

�q�
q�

��
[[�̂y�; ��]; �̂�] + [[�̂� ; ��]; �̂

y
�]

��



+Tr

(
�̂y�
� �V (R(0) + q�)�̂�

�q�
q�

)
+Tr

(
�̂�
� �V (R(0) + q�)�̂

y
�

�q�
q�

)
: (22)

Here

( �V (R)�)m0

n
0 = �

1

2
Vm0

n
0 (R)�m0

n
0 + �m0

n
0

~KX
l=1

Vm0

l
0 (R)�l0 l0 ; (23)

where � = ��; �̂� ; �̂
y
�. The derivatives in Eq. (22) were obtained numerically as �nite

di�erences. The dimensionality of the resulting S matrix is ~K2=2� ~K2=2� (3K�6),

where ~K2=2 and 3K � 6 are the numbers of electronic and vibronic normal modes.
The diagonal elements S��;� describe linear absorption spectrum with vibronic band
positions 
� + n!�. O�-diagonal elements S��;� determine the strength of the
vibrationally-induced transition 
� + n!� in the case when the transition 
� is for-
bidden (e.g. for the states � = Ag in polyenes).

Tables I and II list our numerical results for the coupling constants associated
with the lowest allowed (Bu) and the lowest dark (Ag) optical transitions. Only modes
that have non-zero couplings are shown. The diagonal coupling constants S1Bu1Bu;�
are displayed in Fig. 2 for hexatriene (upper panels) and octatetraene (lower panels).
Fig. 3 shows o�-diagonal couplings S1Bu2Ag;� . Table III gives comparison of our
numerical results with experimental data on linear absorption obtained for jet-cooled
hexatriene and octatetraene [16] respectively.

When the electronic and nuclear modes are well separated (i.e., !� � 
�), we
can set S��;� = 0 for � 6= �, and Eq. (19) describes a model of displaced oscillators
which can be solved exactly [6,17]. To calculate the linear absorption lineshape we
take into account only the �rst Bu mode and accept two-level model in the Condon
approximation. Using the values of S1B1B from Tables I and II and Eqs. (8.42a) and
(8.42b) of [17] we have calculated vibronic structure for the 1Bu transition, shown
in Fig. 4 (T=300K) and and Fid. 5 (T=3000K). The unrealistic temperature in
Fig. 5 is chosen to clarify the Stoke's shift between the maxima of the absorption and
uorescence envelopes (solid and dashed lines). Upper and lower panels correspond
to hexatriene and octatetraene respectively. A homogeneous broadening of 26 meV
was used in calculations.

A more rigorous study of the excited-state surfaces of short polyenes that uses
ab-initio ground-state surface calculations and INDO Hamiltonian for the excitation
spectrum is reported in [18]. The theory can further be generalized to construct
excited-state adiabatic surfaces of molecules using the ground-state surfaces as an
input [18]. The generalization of the theory to nonlinear optical response is given in
[15].
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FIG. 1.

TABLE I. K=6, Hexatriene

cm�1 S1B1B SHR S1B2A SHR

158 0.215 0.000 -461.496 0.332
376 -31.231 0.002 -0.258 0.000
468 323.934 0.164 0.033 0.000
578 0.159 0.000 14.336 0.000
1009 197.514 0.061 0.003 0.000
1035 -0.007 0.000 162.183 0.041
1216 0.036 0.000 218.161 0.074
1298 394.855 0.243 0.041 0.000
1381 -0.027 0.000 -77.926 0.009
1416 122.672 0.023 -0.031 0.000
1427 -0.020 0.000 147.231 0.034
1438 51.420 0.004 0.003 0.000
1545 95.153 0.014 0.008 0.000
1578 -0.002 0.000 143.307 0.032
1769 -28.808 0.001 0.000 0.000
1829 -0.012 0.000 398.913 0.248
1870 627.494 0.614 -0.003 0.000
3281 0.002 0.000 20.810 0.001
3282 16.163 0.000 0.951 0.000
3292 -17.362 0.000 -0.947 0.000
3292 0.004 0.000 -14.666 0.000
3300 -6.809 0.000 0.004 0.000
3303 -0.003 0.000 17.605 0.000
3371 2.450 0.000 3.874 0.000
3371 -2.546 0.000 3.837 0.000

TABLE II. K = 8, Octatetraene

cm�1 S1B1B/cm
�1

SHR S1B2A/cm
�1

SHR

93 0.806 0.000 200.858 0.063
239 61.966 0.006 0.632 0.000
357 440.007 0.302 -0.253 0.000
418 -0.240 0.000 -52.317 0.004
577 -89.793 0.013 -0.422 0.000
605 -0.379 0.000 100.622 0.016
1008 0.079 0.000 168.747 0.044
1034 145.979 0.033 0.002 0.000
1204 156.834 0.038 -0.026 0.000
1231 0.140 0.000 189.527 0.056
1292 -421.076 0.277 -0.147 0.000
1351 -0.094 0.000 -149.681 0.035
1411 38.374 0.002 -0.111 0.000
1419 0.089 0.000 -118.546 0.022
1426 90.698 0.013 -0.065 0.000
1442 -5.135 0.000 -27.060 0.001
1442 -5.612 0.000 30.391 0.001
1554 0.003 0.000 80.849 0.010
1574 49.461 0.004 0.004 0.000
1760 0.004 0.000 38.509 0.002
1809 -12.127 0.000 -0.016 0.000
1854 0.031 0.000 -392.973 0.241
1864 -579.732 0.524 0.017 0.000
3281 7.558 0.000 -1.244 0.000
3281 -2.109 0.000 14.409 0.000
3288 0.545 0.000 0.002 0.000
3290 0.011 0.000 -11.584 0.000
3294 -14.026 0.000 0.011 0.000
3296 0.010 0.000 2.599 0.000
3301 2.185 0.000 0.011 0.000
3304 -0.004 0.000 6.713 0.000
3371 -2.598 0.000 -1.499 0.000
3371 0.968 0.000 -3.843 0.000

TABLE III. Comparison with experiment

Exp Theor
height cm�1 Description cm�1 S1Bu;1Bu SHR

Hexatriene:
18 313 Skeletal bend 464 323.9 0.164
10 718 CH2 rock 1002 197.5 0.061
41 1224 C-C stretch 1289 394.9 0.243
81 1631 C=C stretch 1856 627.5 0.614

Octatriene:
11 197 Skeletal bend 237 62.0 0.006
5 348 Skeletal bend 355 440.0 0.302
2 547 Skeletal bend 573 -89.8 0.013
3 1006 CH2 rock 1026 146.0 0.033
7 1201 C-C stretch 1195 156.8 0.038
23 1235 C-C stretch 1283 -421.1 0.277
60 1645 C=C stretch 1850 -579.9 0.524
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