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A variational procedure is developed which yields the lowest frequen-
cies of small-amplitude oscillations of classical Hamiltonian systems.
The genuine Lanczos recursion is generalized to treat related non-
Hermitian eigenvalue problems. @999 American Institute of Phys-
ics.[S0021-364(19)00723-9

PACS numbers: 45.20.Jj, 02.6&x

The normal modeg and frequencies of small oscillations of a classical system
about equilibrium are determined by the secular equétion

w’ME=KE, ()

whereM andK areNXN symmetric positive-definite matrices of the mass coefficients
and spring constants, respectively. In many applications the nuiber degrees of
freedom is large, while only a few lowest frequencies are of intér&juation (1)
represents a problem more complex than a regular symmetric eigenvalue problem, unless
M or K is diagonal.

Equation(1) can be transformed into Hamiltonian form by introducing the canonical
momentumzn=wM §:

Ké=wn, Tn=wé, 2

where T=M 1. Thus the frequencies of the normal modes are the eigenvalues of a
2N X 2N matrix

0 T)
(K 0/ @

The spectrum of this matrix consists of paitsv, since ¢, — ») is also a solution of
(2) that corresponds te- w. The lowest frequency i, is the lowestpositiveeigenvalue
of the matrix(3).

Although the eigenvalues of the matr{8) are always real, the matrix itself is
non-Hermitian, unlesK=T. Therefore, its diagonalization poses a formidable task. The
major problem is that no general minimum principle exists that yields eigenvalues of
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arbitrary diagonalizable non-Hermitian matrices. This precludes the formulation of a
variational procedure similar to the Rayleigh—Ritz procedure for Hermitian matrices. If
K=T, the matrix(3) is Hermitian, and its positive eigenvalues coincide with thosK of
andT.

As is known from quantum mechanics, the lowest eigenvalyg of a Hermitian
matrix H can be obtained from the minimum principle

€min=Min (gHY) (4)

AT

The minimum is to be sought over all vectafsThe Ritz variational procedure is an
approximation when the sét/} in (4) is restricted to some subspakeof dimension
n<N. The best approximation te,,, in the sense of4) is obtained as the lowest

eigenvalue of thexx n Rayleigh matrixH, obtained by projection off onto K.

The special paired structure of the mat(8 makes it possible to generalizé) so
as to yieldw,,- In fact,

(EKE)+(nTn)
®min= Min

(&7} 2|(&n) ®

The minimum is to be sought over all possible phase space configuréfioms Before
providing the proof to this equation, let me point out some of its features.

First, it states thaby,;, is the minimum arithmetic mean o£K¢) and (T %) over
all pairs of vectorst, » with scalar product{z)=1. SinceK andT are both positive-
definite, the right-hand side is strictly positive and savis;,. Second, Eq(5) is sym-
metric inK andT, according to the nature of the problem. Wh€r T the minimum is
achieved at= 5, and(5) becomes the same &%).

Note that the functional i5) has no maximum, since the denominator can be made
arbitrarily small. A global minimum, however, always exists. This is not obvious, since
the set of all pairs of vectors withéf)=1 is not compact. Indeed, say, any vector
orthogonal toy can be added tg, making|£| arbitrarily large. However, the functional
in (5) grows indefinitely in this case, so that the global minimum is achieved at fijite
and|7|.

Variation of (5) with respect tc¢€ and 7 yields Eq.(2). Thus the solutions of2) are
the stationary points of5). The global minimum(5), therefore, indeed gives,;,. The
singularity in the denominator poses no problem, since it corresponds to infinitely large
values of the functional, while near the minimum it is analytic.

The minimum principle(5) can, in fact, be obtained from the Thouless minimum
principle? derived for non-Hermitian matrices that appear in the random phase approxi-
mation (RPA). Equation(5) is transformed into the Thouless minimum principle by the
following substitution:A=(K+T)/2, B=(K—T)/2, x=(&(+ 1)/2, andy=(¢— 7)/2.
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A variational procedure similar to the Rayleigh—Ritz procedure can be formulated if
the coordinateg and momentay in (5) are restricted to some subspaéésand )V of
dimensionn, respectively.

Let {&} and{ 7} be two sets of vectors that spahand V), such that £ 7;) = &;; .
Expandingé=2u;&;, »=2v;#n; and varying(5) with respect tay; andv;, we find the
latter to obey a 8 2n eigenvalue equation

[ oll-=L) ®

with K;; = (&K &) andT;;= (7T #;). Equation(6) generalizes the Hermitian Rayleigh—
Ritz eigenvalue equation ft. It has 4 solutions* w, the lowest positive one of which
gives the best approximation te,,, in the sense of Eq5).

The Krylov subspacefor the matrix(3) can be constructed by operating with it
many times on an arbitrary vectoé;(, 74):

( fl) (T7}1> ( TK§1) )
)’ Kéi)' KTy

The subspace that spans the finstectors of this sequence has the property of
approximating an invariant subspace(8f. Thus it is natural to expand the approxima-
tion to an eigenvector df3) as a linear combination of these vectors. In other words, the
natural choice for the subspaddsandV for the variational procedure described above
are the subspacés, and)/, that span the upper and lower components of firgectors
of (7).

In order to implement the variational procedure, it is necessary to construct a bior-
thogonal basi$&, , 7}, i=1,...,nin U, andV, and compute matrix elements ifand
T. Both tasks can be performed simultaneously using the following recursion:

&= Bi(Tyi—ai&i—Bi&ioy) (8a)

Mis1= 6 1 (K&—vimi— Simiq). (8b)

The four coefficientsy;, B;, i, andd, are to be chosen at each steyp as to maké; , ;
orthogonal ton; and »; 4 and to maker, , ; orthogonal to&; and&; _,. This appears to
be enough to ensure global biorthogonality«;) = &;; .

Indeed, assume biorthogonality to hold up to steplultiplying (8a) by #;, j<i
—1, we have ;& 1)< (7 T7)=(%T»n;)=0 due to the Hermiticity off and the fact
thatT »; is a linear combination of alf, with k<j+ 1<i. Thus, the biorthogonality also
holds for the step+1.

Multiplying (8@ by 7;_1, 7;, and 5,1 and using biorthogonality, we get;;)
=1, Rii =«qj, and Ri,i*lzRifl,i :Bi . Slmllarly, 7Fii =i and :'I'i'i,1=:|"i,1qi = 5i . All
other matrix elements df andT vanish.

The recursion(8) is a straightforward generalization of the Hermitian Lanczos
recursiod

Yiv1=Bra(Hii— aithi— Bithi— 1) 9
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FIG. 1. Convergence of the generalized Lanczos algorithm for a random matrix of thg3pand size N
=200000.

applicable to any Hermitian matriki. When K=T and &;= »;, both Equationg8)
coincide with each other and with E(R), up to notation.

As in the case of the Hermitian Lanczos algorithm, the several lowest frequencies
can be found by projecting thieéand » components of converged eigenvectors out of the
V, andl,, subspaces, respectively.

The method was tested on a set of large sparse random matrices of thé€3jorm
Symmetric matrice§ andK were generated having an average of 40 randomly distrib-
uted and randomly positioned matrix elements in each row. BahdT were shifted by
an appropriate constant to ensure positive-definiteness. Figure 1 demonstrates the con-
vergence results for a matrix of sizé\2200000.

For smaller matrices up toN=2000, where it was possible to obtain all eigenval-
ues with regular methods, the present method has converged to the true lowest frequency
in all instances.

In conclusion, we have proposed a method that generalizes the Rayleigh—Ritz varia-
tional procedure and Lanczos recursion to the case of non-Hermitian matrices of the form
(3) which determine the normal modes and frequencies of small-amplitude oscillations of
Hamiltonian systems.

Equationg2) have numerous applications beyond purely mechanical problems. The
Schralinger equation in a nonorthogonal basis represents a generalized symmetric eigen-
value problem similar tq1). The RPA and other time-dependent techniques in nuclear
physics and quantum chemistry lead to equations simil#R)d° Last, eigenvectors of
so-called Hamiltonian matrices, of whi¢B) is a special case, solve the nonlinear alge-
braic Riccati equation which appears in the theory of stability and optimal cdntrol.

| would like to acknowledge numerous enlightening discussions with Vladimir
Chernyak during my appointment at the University of Rochester.
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