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Variational procedure and generalized Lanczos recursion
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A variational procedure is developed which yields the lowest frequen-
cies of small-amplitude oscillations of classical Hamiltonian systems.
The genuine Lanczos recursion is generalized to treat related non-
Hermitian eigenvalue problems. ©1999 American Institute of Phys-
ics. @S0021-3640~99!00723-9#

PACS numbers: 45.20.Jj, 02.60.2x

The normal modesj and frequenciesv of small oscillations of a classical syste
about equilibrium are determined by the secular equation1

v2Mj5Kj, ~1!

whereM andK areN3N symmetric positive-definite matrices of the mass coefficie
and spring constants, respectively. In many applications the numberN of degrees of
freedom is large, while only a few lowest frequencies are of interest.2 Equation ~1!
represents a problem more complex than a regular symmetric eigenvalue problem,
M or K is diagonal.

Equation~1! can be transformed into Hamiltonian form by introducing the canon
momentumh5vMj:

Kj5vh, Th5vj, ~2!

where T5M 21. Thus the frequencies of the normal modes are the eigenvalues
2N32N matrix

S 0 T

K 0D . ~3!

The spectrum of this matrix consists of pairs6v, since (j,2h) is also a solution of
~2! that corresponds to2v. The lowest frequencyvmin is the lowestpositiveeigenvalue
of the matrix~3!.

Although the eigenvalues of the matrix~3! are always real, the matrix itself i
non-Hermitian, unlessK5T. Therefore, its diagonalization poses a formidable task.
major problem is that no general minimum principle exists that yields eigenvalue
7510021-3640/99/70(11)/5/$15.00 © 1999 American Institute of Physics



of a
s. If
f

n

t

ade
ince
or
l

large

m
roxi-
he

752 JETP Lett., Vol. 70, No. 11, 10 Dec. 1999 E. V. Tsiper
arbitrary diagonalizable non-Hermitian matrices. This precludes the formulation
variational procedure similar to the Rayleigh–Ritz procedure for Hermitian matrice
K5T, the matrix~3! is Hermitian, and its positive eigenvalues coincide with those oK
andT.

As is known from quantum mechanics, the lowest eigenvalueemin of a Hermitian
matrix H can be obtained from the minimum principle

emin5min
$c%

~cHc!

~cc!
. ~4!

The minimum is to be sought over all vectorsc. The Ritz variational procedure is a
approximation when the set$c% in ~4! is restricted to some subspaceK of dimension
n,N. The best approximation toemin in the sense of~4! is obtained as the lowes
eigenvalue of then3n Rayleigh matrixH̃, obtained by projection ofH onto K.

The special paired structure of the matrix~3! makes it possible to generalize~4! so
as to yieldvmin . In fact,

vmin5min
$j,h%

~jKj!1~hTh!

2u~jh!u
. ~5!

The minimum is to be sought over all possible phase space configurations$j,h%. Before
providing the proof to this equation, let me point out some of its features.

First, it states thatvmin is the minimum arithmetic mean of (jKj) and (hTh) over
all pairs of vectorsj, h with scalar product (jh)51. SinceK andT are both positive-
definite, the right-hand side is strictly positive and so isvmin . Second, Eq.~5! is sym-
metric in K andT, according to the nature of the problem. WhenK5T the minimum is
achieved atj5h, and~5! becomes the same as~4!.

Note that the functional in~5! has no maximum, since the denominator can be m
arbitrarily small. A global minimum, however, always exists. This is not obvious, s
the set of all pairs of vectors with (jh)51 is not compact. Indeed, say, any vect
orthogonal toh can be added toj, makinguju arbitrarily large. However, the functiona
in ~5! grows indefinitely in this case, so that the global minimum is achieved at finiteuju
and uhu.

Variation of ~5! with respect toj andh yields Eq.~2!. Thus the solutions of~2! are
the stationary points of~5!. The global minimum~5!, therefore, indeed givesvmin . The
singularity in the denominator poses no problem, since it corresponds to infinitely
values of the functional, while near the minimum it is analytic.

The minimum principle~5! can, in fact, be obtained from the Thouless minimu
principle,3 derived for non-Hermitian matrices that appear in the random phase app
mation ~RPA!. Equation~5! is transformed into the Thouless minimum principle by t
following substitution:A5(K1T)/2, B5(K2T)/2, x5(j1h)/2, andy5(j2h)/2.
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A variational procedure similar to the Rayleigh–Ritz procedure can be formulat
the coordinatesj and momentah in ~5! are restricted to some subspacesU and V of
dimensionn, respectively.

Let $j i% and $h i% be two sets of vectors that spanU andV, such that (j ih j )5d i j .
Expandingj5(uij i , h5(v ih i and varying~5! with respect toui andv i , we find the
latter to obey a 2n32n eigenvalue equation

S 0 T̃

K̃ 0
D S u

v D 5ṽS u

v D , ~6!

with K̃ i j 5(j iKj j ) and T̃i j 5(h iTh j ). Equation~6! generalizes the Hermitian Rayleigh
Ritz eigenvalue equation forH̃. It has 2n solutions6ṽ, the lowest positive one of which
gives the best approximation tovmin in the sense of Eq.~5!.

The Krylov subspace2 for the matrix ~3! can be constructed by operating with
many times on an arbitrary vector (j1 ,h1):

S j1

h1
D , S Th1

Kj1
D , S TKj1

KTh1
D , . . . . ~7!

The subspace that spans the firstn vectors of this sequence has the property
approximating an invariant subspace of~3!. Thus it is natural to expand the approxim
tion to an eigenvector of~3! as a linear combination of these vectors. In other words,
natural choice for the subspacesU andV for the variational procedure described abo
are the subspacesUn andVn that span the upper and lower components of firstn vectors
of ~7!.

In order to implement the variational procedure, it is necessary to construct a
thogonal basis$j i ,h i%, i 51, . . . , n in Un andVn and compute matrix elements ofK̃ and
T̃. Both tasks can be performed simultaneously using the following recursion:

j i 115b i 11
21 ~Th i2a ij i2b ij i 21! ~8a!

h i 115d i 11
21 ~Kj i2g ih i2d ih i 21!. ~8b!

The four coefficientsa i , b i , g i , andd i are to be chosen at each stepi so as to makej i 11

orthogonal toh i andh i 21 and to makeh i 11 orthogonal toj i andj i 21. This appears to
be enough to ensure global biorthogonality (j ih j )5d i j .

Indeed, assume biorthogonality to hold up to stepi. Multiplying ~8a! by h j , j , i
21, we have (h jj i 11)}(h jTh i)5(h iTh j )50 due to the Hermiticity ofT and the fact
thatTh j is a linear combination of alljk with k< j 11, i . Thus, the biorthogonality also
holds for the stepi 11.

Multiplying ~8a! by h i 21 , h i , andh i 11 and using biorthogonality, we get (j ih i)
51, K̃ ii 5a i , and K̃ i ,i 215K̃ i 21,i5b i . Similarly, T̃ii 5g i and T̃i ,i 215T̃i 21,i5d i . All
other matrix elements ofK̃ and T̃ vanish.

The recursion~8! is a straightforward generalization of the Hermitian Lancz
recursion2,4

c i 115b i 11
21 ~Hc i2a ic i2b ic i 21! ~9!
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applicable to any Hermitian matrixH. When K5T and j15h1, both Equations~8!
coincide with each other and with Eq.~9!, up to notation.

As in the case of the Hermitian Lanczos algorithm, the several lowest freque
can be found by projecting thej andh components of converged eigenvectors out of
Vn andUn subspaces, respectively.

The method was tested on a set of large sparse random matrices of the for~3!.
Symmetric matricesT andK were generated having an average of 40 randomly dist
uted and randomly positioned matrix elements in each row. BothK andT were shifted by
an appropriate constant to ensure positive-definiteness. Figure 1 demonstrates th
vergence results for a matrix of size 2N5200000.

For smaller matrices up to 2N52000, where it was possible to obtain all eigenv
ues with regular methods, the present method has converged to the true lowest fre
in all instances.

In conclusion, we have proposed a method that generalizes the Rayleigh–Ritz
tional procedure and Lanczos recursion to the case of non-Hermitian matrices of the
~3! which determine the normal modes and frequencies of small-amplitude oscillatio
Hamiltonian systems.

Equations~2! have numerous applications beyond purely mechanical problems.
Schrödinger equation in a nonorthogonal basis represents a generalized symmetric
value problem similar to~1!. The RPA and other time-dependent techniques in nuc
physics and quantum chemistry lead to equations similar to~2!.3,5 Last, eigenvectors of
so-called Hamiltonian matrices, of which~3! is a special case, solve the nonlinear alg
braic Riccati equation which appears in the theory of stability and optimal control.6

I would like to acknowledge numerous enlightening discussions with Vlad
Chernyak during my appointment at the University of Rochester.

FIG. 1. Convergence of the generalized Lanczos algorithm for a random matrix of the form~3! and size 2N
5200000.
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