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Effect of ordering on the energy spectrum of narrow-gap III-V alloys:
Possibility of the transition into the gapless state
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The energy spectrum of a narrow-gap ordered alloy is calculated using the three-band Kane model. It
is shown that when the energy gap, reduced by ordering, becomes negative, the transition to a gapless,
rather than a semimetallic, state occurs. In order to study the effects beyond the Kane model, the exact
equation for the energy spectrum including the finite hole mass and the band warp is derived. The sta-
bility of a gapless state with respect to these higher-band corrections is demonstrated.

The phenomenon of long-range ordering has been ob-
served in nearly all ternary and some quaternary semi-
conductor alloys.! Ordering displays itself in alloys
grown by metal-organic chemical vapor deposition within
some range of growth conditions.! In the case of CuPt-
type ordering the cation (or anion) sublattice represents a
set of alternating {111}-type atomic planes, preferentially
occupied by the different cations (anions).

By doubling the unit cell along the axis, perpendicular
to the planes, ordering reduces the symmetry of the crys-
tal and thereby modifies the energy spectrum of the ma-
terial. The most significant manifestations of the
ordering-induced change in the energy spectrum are a
substantial reduction of the band gap and a splitting of
the valence band, both revealing themselves in the photo-
luminescence®> and electroreflectance* experiments.

Experimentally observed values of the band-gap reduc-
tion 8E are about 100—150 meV,’ while the valence-band
splitting is usually smaller and was reported to be about
10-20 meV.? Values of the band-gap reduction and
valence-band splitting for a variety of perfectly ordered
alloys have been calculated numerically by Wei and
Zunger.5 Qualitatively the band-gap lowering is caused
by the ordering-induced zone folding and consequent
level-level repulsion of the states of the I" and L minima.$
Due to this repulsion, the bottom of the conduction band
moves down. The top of the valence band also splits and
is repelled upward as a whole. This is illustrated by the
schematic band diagram shown in Fig. 1. The energy dis-
tance W, between the lowest I' and L conduction-band
minima is usually much smaller than the corresponding
value for the valence band W,. In this case the total
band-gap reduction can be ascribed to the shift of the
conduction band only, which is given by the simple for-
mula for the two-level repulsion.’
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Here V, is the absolute value of the matrix element of the
ordering-induced perturbation, taken between the I'- and
L-minima Bloch functions. Note that ¥V, is proportional
to the degree of ordering.
The intriguing question is what will happen with the
spectrum in the case when the value of the band-gap
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reduction is close to or even larger than the band gap of
the random alloy. The numerical calculations of band-
gap reduction performed in Ref. 6 show this situation to
be plausible for some narrow-band alloys. According to
their results, the completely ordered InGaSb, should
have E; as low as 0.09 eV instead of Eg =0.4 eV (Ref. 8)
for the random alloy. The situation is even more drastic
for InyAsSb, which has EJ=0.1 eV in the disordered
phase. The position of the I'}, minimum in the complete-
ly ordered compound was predicted to lie lower than the
top of the valence band, so that E, =—0.28 eV.

It is remarkable that a simple estimate, based on Eq.
(1), is in very good agreement with these results. Namely,
we can estimate the value of the band-gap reduction in
the completely ordered InGaSb, and In,AsSb from that
known for the “analogous” materials—InGaAs, and
Ga,AsSb, respectively. Indeed, InGaSb, and InGaAs,
differ in anions. Ordering involves the atoms in the cat-
ion sublattice. One can then expect the value of the ma-
trix element ¥, not to change significantly as Sb is re-
placed by As. The same applies to the pair In,AsSb-
Ga,AsSb. These materials differ in cations while the or-
dering occurs in the anion sublattice. Taking for W, the
average values of the I'-L distance at x =0 and 1,
W,.=0.7 eV for InGaAs, and W,=0.35 eV for
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FI1G. 1. Schematic illustration of the ordering-induced
modification of the energy spectrum of an alloy. Dashed lines
show the initial spectrum in the disordered phase; solid lines
refer to ordered phase.
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Ga,AsSb,? we find from Eq. (1) the matrix elements ¥,
for these alloys to be V,=1/'8E_(8E,+W,)=0.57 and
0.71 eV, respectively [here we have used the values
8E,=0.32 eV for InGaAs, and 8E,=0.56 eV for
Ga,AsSb (Ref. 6)]. Substituting these values and the
values W, =0.8 eV for InGaSb, and W, =1.1 &V for
In,AsSb (Ref. 8) again into Eq. (1) we obtain
E,~EJ—8E,=0.10 and —0.25 ¢V for InGaSb, and
In,AsSb.

The purpose of this paper is to calculate the spectrum
of electrons and holes in narrow-gap ordered semicon-
ductors. We demonstrate that when the energy gap be-
comes small enough to be comparable with the value of
the valence-band splitting, the spectrum undergoes a
drastic transformation and becomes strongly anisotropic
and nonparabolic.

In the case when 8E > Eg it might be expected that the
conduction and the valence bands will overlap and one
will have a semimetal. We will show, however, that this
case corresponds not to a semimetal but to a gapless
semiconductor with quite unusual spectra for electrons
and holes.

In order to calculate the spectrum we use perturbation
theory, assuming the ordering-induced changes in the
band structure to be small compared to the typical inter-
band energy distances. Generally, the calculation of the
energy spectrum requires all the extrema in the I and L
points to be taken into account. However, since the ener-
gy gap and the valence-band splitting are both much
]
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smaller than the energy distances to all other extrema, we
can restrict our consideration to three bands only: the
conduction band and the heavy- and light-hole valence
bands. In other words, we will study the effect of order-
ing on the energy spectrum in the framework of the stan-
dard three-band Kane model with the usual basis’

st o=ISTL); hy =V HXENTL),
I =—vVHZTDEYVIX LTI,

where X, Y, Z, and S denote the periodic Bloch functions
of p- and s-type, respectively.

Let us first consider the problem in the spherical ap-
proximation, neglecting the effects caused by the cubic
symmetry of the crystal. The role of these effects will be
studied below. Within the spherical approximation the
ordering-induced perturbation has an axial symmetry.
Thus we can choose the z axis along the direction of or-
dering. The perturbation will then be diagonal in the
basis of the momentum eigenfunctions. Moreover, six di-
agonal matrix elements are, obviously, equal in pairs:
(516F£s)=(s,8%fs ), etc., so that the effect of ordering
is characterized only by three independent matrix ele-
ments, which describe the shifts of the three-band extre-
ma at k=0. If we measure the energy from the top of the
shifted heavy-hole band, only two ordering-induced ma-
trix elements will appear in the Hamiltonian # so that
the corresponding matrix takes the form

St sy hy o L T .
E, 0 Pk —V/3Pk, —\—/l'gpk— 0
0 E, 0 —‘}?Ph_ —/ZPk, Pk_
Pk_ 0 0 0 : 0 0 @
_ 1
—+/Zpk ——Pk_ , ~U 0 0
'\{3 z ‘/3 0 - ot N
——\/—S_Pk-'_ "\/%—sz 0 -U 0
0 Pk, 0 0 0

where k. =(k, :i:iky)/\/_i and P is the Kane matrix ele-
ment. In addition to the standard Kane matrix (see, e.g.,
Ref, 9) the matrix (2) contains the elements
(1, %#1,)=—1U, which are responsible for the ordering-
induced splitting of the valence band. The parameter E,
stands for the exact position of the conduction-band
edge, shifted down by ordering. Note, that as the spheri-
cal Kane approximation is adopted, the form (2) of the
Hamiltonian results from the symmetry requirements
only.

The matrix (2) determines three doubly degenerate
branches of the energy spectrum which are the solutions
of the cubic equation

E{(E —E,)(E+U)—2P*¥?*}=1UP%%in%0 . (3)

Here 0 is the angle between k and the ordering axis.

The solutions of Eq. (3) for different relations between
E, and U and for three directions of the wave vector k
are shown in Fig. 2. For k=0 the energy positions of the
extrema of the branches 1, 2, and 3 are Eg, 0, and — U,
respectively. At 6=0 (k is parallel to the ordering axis)
branch 1, which for positive E, corresponds to the con-

g

duction band, crosses the heavy-hole branch 2 as E, be-
comes negative. The intersection takes place at k ==k,

where
ko=V/3U|E,|/2P% . @)

With the further increase of |E, |, branch 1 meets the
light-hole branch 3 and the inversion of the branches
occur (see Fig. 2). From the evolution of the spectrum at
6=0 it might seem that the case of negative E, corre-
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sponds to a semimetal. However, it is seen from Fig. 2
that the gap in the spectrum opens at finite 8. The cru-
cial point is that in the absence of doping the Fermi-level
position is E;=0, i.e., the Fermi level coincides with the
energy at which branches 1 and 2 cross each other at
0=0. This is a consequence of the fact that the number
of states with energies E <0 is just equal to the number of
states in the valence band of the disordered alloy. Thus
we conclude that the energy spectrum at E, <O corre-
sponds to the gapless semiconductor with the conduction
band having the almost flat bottom originating from the
states of branch 2. On the contrary, the spectrum of the
valence band includes part of the former branch 1.

The flat region in the conduction band implies that the
longitudinal (in the direction of ordering) mass is
infinitely large. The transverse mass is finite and is deter-
mined by the parameter E, in a way which is usual for
the Kane model: m§=#*[E,|/P% For the small ener-
gies |E| << U, |E,|, Eq. (3) can be simplified. Then we get
the analytic form of the energy spectrum of the conduc-
tion and the upper valence bands,

U(kZ___kZ) 2.2 172
E, z(k)zo——*z—o 1+ 1+£J_]EE%§_ ,
’ 2k0 Uo(k _'ko)
(5
where Uy=U\E,| /(U +|E,]).
The density of states in the conduction band, g (E), cal-
culated with the use of Eq. (3), has the form

(E)="1 2U 57 | | SU+IE (6)
& V3P 3UIE,|

We see that the density of states remains finite when E
goes to zero: g(0)=8kym$ /37*#* as is the case in two-
dimensional systems. Indeed, an infinite longitudinal
mass makes the spectrum effectively two dimensional. In
fact, the finite value of g(0) is an artifact of the Kane
model. When the dispersion of the heavy-hole band is
taken into account, the density of states vanishes at
E =0. However, Eq. (3) gives the correct behavior of the
density of states in the wide range of energies
#°k}/2m), <E <<min(U, |E_|), m), being the heavy-hole
mass in the absence of ordering.

We have mentioned above that the spectrum of elec-
trons and holes becomes strongly anisotropic and nonpar-
abolic even in the case when E, is positive. Indeed, the
values of the longitudinal and transverse effective masses
in the conduction band as obtained from Eq. (3) for
E, >0 are given by

3RE,+U)

3#(E,+U)E,
T '

m$, =
& 4PAE,+1U)

- (D

When E, becomes small, m{ goes to zero, while mﬁ
remains constant. This results in the strong anisotropy
my/m{~3U/4E, >>1 for E; <<U.

As follows from Eq. (3) the longitudinal effective mass
of a heavy hole remains infinite in the ordered phase.
However, the transverse mass becomes finite due to or-
dering: m J_—ﬁzE /P2 Note, however, that the parabol-
ic spectrum E = —ﬁ2k2/2m ) applies only in the narrow

M. E. RAIKH AND E. V. TSIPER 50

o<9<<m/ 2

\'E O\
N

/| /N
SNVAAVERVA

A TN
ONVAANVARNS

X X

FIG. 2. Evolution of the spectrum with the increase of the
ordering parameter, calculated in the frame of the spherically
symmetric Kane approximation for three values of the angle be-
tween k and the ordering axis: =0, O.17, and 7/2, at (a)
E,=0.5U, (b) E;=—0.5U, and (c) E;=—1.5U. 1, 2, and 3 la-
bel the eigenenergy solutions in the representative directions
and for the representative degrees of ordering.

region, k} <<6UEZ/PX3U +|E,|),
row, the smaller the ordering is.

The next important question is whether the prediction
about the gapless state at E; <O survives when the finite
mass of the heavy hole and the band warp, caused by the
cubic symmetry of the crystal, are taken into account.
Indeed, it might happen that small terms, responsible for
these effects, can modify the spectrum in such a way that
the conduction and valence bands overlap within some
narrow energy interval, thus leading to a semimetal. In
the latter case the sample would contain a finite and
equal amount of free electrons and holes at zero tempera-
ture. On the contrary, in the absence of the overlap the
concentration of free carriers would fall off as a power
law with decreasing temperature. To get the answer to
this question we have derived the complete equation
which includes all higher-band corrections, which in turn
cause the finite heavy-hole mass and warp.

We derive the complete Hamiltonian following the
method used in Ref. 10. It is more convenient to write
the generalized Hamiltonian in the cubic axes of the crys-
tal. The Hamiltonian consists of three parts. First, the
standard Kane Hamiltonian, which takes into account
three bands exactly, has in our new representation the
same form (2), because of its spherical symmetry. The
higher-band corrections are known to give the
Luttinger-like 4 X4 block based on p functions.”!! They
also renormalize the band gap and give small quadratic
corrections to the diagonal (s-s) matrix elements. Final-
ly, the matrix of the ordering-induced perturbation enters
into the Hamiltonian after rotation of its diagonal form
to the new axes. As a result we obtain

which is more nar-
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1
—11/"§sz 5 Pk - B* F, 0 —C
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where the parameters F, F;, B, and C include the
ordering-induced terms and are given by

Fy1=—(7,F27,)k2— (¥ 127, )k} +kD) ,
B =2V3%3k,(k, —ik,)+(1—)U/2V3 , (9)
C=V3{Pyk}—k})—2i¥ sk k,} —iU/2V3 .

Note that in the new axes the ordering-induced terms are
nondiagonal.

In (8) and (9) we have introduced the notation
¥, =(#*/2mg)y;, m, being the free-electron mass. Four
dimensionless parameters y; are defined as

mq 4m0P2 moP?

=0y,
m,  3mES’ ¢ Ve Va3pp0

Yo= (10

where @=1,2,3, v,=2, v, ;=1; % are the standard Lut-

tinger parameters.’? As defined, the parameters 7, ¥,,

and ¥ are the higher-band corrections to ¥9, ¥3, and y3,

respectively. The value y, characterizes the higher-band
contribution to the electron effective mass.

Note, that contrary to the Hamiltonian (2), the gen-

. J

eralized Hamiltonian (8) is written for the particular type
of ordering, namely, CuPt-type, when the ordering axis is
directed along (111). The Hamiltonian (8) still does not
contain small terms, connected with the absence of the
inversion symmetry. In the crystalline III-V materials
the twofold Kramers’s degeneracy of the branches of the
spectrum is lifted due to the absence of the inversion
symmetry. The corresponding terms in the Hamiltonian
are of the relativistic (spin-orbit) origin. They give rise to
the small correction, +ak?, to the energy spectrum in the
absence of ordering.!! This splitting is especially small at
small k. In the presence of ordering the top of the
valence band is shifted to the point k =k, where the rel-
ativistic terms could be more important. Their magni-
tude in the region k ~k, can be estimated as ak}. Tak-
ing U= |E l— 100 meV and the value of  from Ref. 13,

a=40 eV A (for GaAs) we obtain akj=~0.07 meV, We
see that the correction is small and, thus, the terms
caused by the absence of the inversion symmetry can be
omitted.

Three doubly degenerate branches of the eigenvalues of
the Hamiltonian (8) are the solutions of the following cu-
bic equation:

[E +(7,—273)k?] [(E —E, —Fok ) E + U +(7,+27,)k? ]-— kz}

+kZsin%0 [k2(72—73)f(9,<p)

Here 9 and @ are, respectively, the polar and the azimu-
thal angles of the wave vector k. The angle ¢ is mea-
sured from the (112) direction, perpendlcular to the (111)
ordering axis. The function f(6,¢) is defined as
F(0,p)=Tsin?0+2V2sin20 cos3p—8. Equation (11)
differs from that derived in Ref. 12 by additional terms,
proportional to U, which are caused by ordering. On the
other hand, in the Kane limit (¥,=0) Eq. (11) reduces to
Eq. (3).

It is seen that at =0 the heavy-hole branch
E =—(7,—2%,)k? still does not interact with the other
two branches. For stability of the gapless state the term
with sin?0, which is responsible for the opening of the
gap at nonzero 6, should be negative. It can be seen that

(72+73)(E _Eg—“70k2)— v

2
+3U [273(E —E,— 7ok~

3 2

]=0 . an

this is the case in Eq. (11). Indeed, at the typical value
k =k, the main terms are those proportional to P2. The
term proportional to U is always negative. The only pos-
sibility for the gap not to open at 650 occurs if the term
proportional to (%,—#,) is positive and compensates the
second term. The corresponding condition for that is
(y,—73)>moP?/4|E,|#*. It is easy to see that this con-
dition is not met for any realistic values of parameters.
Indeed, the parameters 7, ; are of the order of unity,
while the right-hand side is of the order of
mgo/m,~ 10?-10° for narrow-gap materials.

In conclusion we have demonstrated that ordering in
narrow-gap semiconductors leads to a radical change in

the energy spectrum, making it strongly anisotropic and
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nonparabolic (as in the case of InGaSb,) and even causing
the transition into a gapless state (as in the case of
In,AsSb).
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