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ABSTRACT

We consider 1D and 2D gas of spinless fermions with the Coulomb and the short
range interactions on a square lattice at T = 0. Using exact diagonalization technique
we study �nite clusters with up to 16 and in some cases up to 20 particles at �lling
factors � = 1=2 and 1/6. By increasing the hopping amplitude we obtain the low-energy
spectrum of the system in a wide range from the classical Wigner crystal to almost free
gas of fermions. The most e�orts are made to study the mechanism of the structural
and insulator-metal transitions. We show that both transitions are determined by the
energy band of the defect with the lowest energy in the Wigner crystal.

INTRODUCTION

The insulator-metal (IM) transition and the role of electron-electron interaction in
this transition is a problem of permanent interest, both theoretical and experimental.
It has been shown1, 2, 3 that in the systems with strong disorder the interaction is in
favor of delocalization because electrons may help each other to overcome the random
potential. In clean systems the role of the interaction is opposite. It may create the so-
called correlated insulator in a system which would be metallic otherwise. The Wigner
crystal (WC) is a good example of such insulator.

WC in continuum is not an insulator itself, since it can move as the whole and
carry current. However, due to shear modulus it can be pinned by a small disorder.
The ground-state energy of the continuum WC and its zero-temperature melting was
widely studied in the recent years both with and without magnetic �eld.4

In contrast to the continuum case, the WC on a lattice can be an insulator without
any disorder due to the Umklapp processes in a host lattice. The WC on a lattice does
not have any sound or soft plasma modes and its excitation spectrum has a gap.

Here we report on the study of the structural and IM transitions for spinless
fermions at � = 1=2 and 1/6. To detect these transitions we use the ground-state
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splitting and the 
ux sensitivity5, 6 respectively. The purpose of the work is to take
advantage of the exact diagonalization technique and to study the modi�cation of the
low-energy part of the spectrum in a wide interval of the hopping amplitude J all the
way from the classical WC to the free fermion limit.

GENERAL REMARKS

We consider spinless fermions at T = 0 on the 2D square lattice described by the
following model Hamiltonian

H = J
X

r;s

ay
r+sar exp(i�s) +

1

2

X

r 6=r
0

nrnr0V (jr� r0j): (1)

Here nr = ay
r
ar, the summation is performed over the lattice sites r, r

0

and over
the vectors of translations s to the nearest-neighbor sites. We consider long-range
(LR) Coulomb potential V (r) = 1=r and short-range (SR) strongly screened Coulomb
potential V (r) = exp(�r=rs)=r with rs = 0:25 in the units of lattice constant. We study
rectangular clusters Lx�Ly with the periodic boundary conditions. The dimensionless
vector potential � = (�x; �y) in the Hamiltonian is equivalent to the twist of the
boundary conditions by the 
ux �i = Li�i, i = x; y. The energy spectrum is periodic
in �x and �y with the period 2�.

As a basis for computations we use many-electron wave functions at J = 0 in the
coordinate representation: 	� =

QN
i=1 a

y
ri
jVAC >. They can be visualized as pictures,

which we call icons. The total number of icons is CN
M , where M = Lx � Ly is the

area of a system, and N is the number of particles. The icon with the lowest energy is
a fragment of the crystal. The icons with higher energies represent di�erent types of
defects in WC.

The Hamiltonian Eq. (1) is translationally invariant. For each icon � there are m�

di�erent icons that can be obtained from it by various translations. These icons are
combined to get the wave function with total quasimomentum P:

	�P =
1p
m�

X

r

exp(iPr)Tr	�: (2)

The summation is performed over m� translations Tr.
For the icons with periodic structures the number m� of di�erent functions 	�P is

smaller thanM . For example, the icon 	0 of the WC with one electron per primitive cell
generates m0 = 1=� di�erent values of P. Note that the total number of allowed values
of P for the WC is the property of the WC and remains �nite at in�nite cluster size.
Contrary, an icon representing a point defect in a WC generates all vectors P. Their
total number is equal to the volume M of the �rst Brillouin zone of the background
lattice.

In the macroscopic system all the states generated by the WC icon form the ground
state degenerate at small J . This degeneracy appears because the e�ective matrix
elements which connect translated WC's are zero in the macroscopic limit. The total
energy as a function of quasimomentum P has identical minima at all P generated
by the WC icons. The spectra of excitations in the vicinity of these minima are also
identical. The lifting of the ground state degeneracy at some critical value Jc indicates
a structural phase transition and restoration of the host lattice symmetry.

The 
ux sensitivity of a macroscopic system is zero at small J . It becomes non-zero
at some �nite value of J which might be di�erent from Jc. We associate this transition
with the IM transition.5
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For the �nite system the following results can be obtained directly using the per-
turbation theory with respect to J :

(i) the ground state and the lowest excited states have a large common negative
shift which is proportional to J2 and to the total number of particles N . This shift
is the same for all low-lying states and does not a�ect the excitation spectrum of the
system;

(ii) at � = 1=2 the splitting of the ground state appears in the N -th order and is
proportional to JN . At other �lling factors the splitting is proportional to JK with K
being proportional to N ;

(iii) the 
ux dependence of the ground state for the 
ux in x-direction appears
in the Lx-th order and is proportional to JLx in 2D case. In 1D the 
ux dependence
appears in the N -th order and is proportional to JN .

Thus, we conclude that both lifting of the ground-state degeneracy and appearance
of the 
ux sensitivity occur very sharply and they can be used as convenient criteria for
the structural and the IM transitions respectively. Note that the correlation function
is a less sensitive criterion for small clusters7, 8 since it does not exhibit sharp behavior
in the transition region.

THE MECHANISM OF TRANSITION

Our data suggest the following mechanism of the transition. The width of the band
of the defect in the WC increases with J such that its lowest edge comes close to the
energy of the ground state.8, 9 Strong mixing between the crystalline and defect states
with the same quasimomentum occurs at this point and an avoided crossing appears
between the ground state and the states in the defect band.

One can interpret the avoided crossing in terms of the ground state which acquires
a large admixture of defect states. This interpretation reminds the idea of zero-point
defectons proposed by Andreev and Lifshitz.10

In principle, one can imagine that the state with a quasimomentum P di�erent
from those generated by the WC icon becomes the ground state via a branch crossing.
However, in all cases we have considered, we observe the avoided crossing between the
crystalline state and the state in the defect band with the same P. Assuming that this
is the case for larger clusters, we conclude that the phase transition is not of the �rst
order.

The proposed mechanism implies that critical value of J is determined by the
energy � of the lowest defect at J = 0. Our data suggest the following simple empirical
rule for Jc:

Jc = �� (3)

where � is some number which is close to 0.5 for all 2D and 1D systems we have studied.
For the exactly soluble 1D problem with nearest-neighbor interaction11{13 � is

exactly equal to 0.5. For the 1D Coulomb problem � = 2 ln 2 � 1 = 0:386. Our
computations9 show that for the Coulomb interaction Jc is between 0.17 and 0.3, which
gives 0:44 < � < 0:77. Note that this result clearly contradicts to the statement by
Poilblanc et al.14 that 1D Coulomb system is metallic at all J .

We have found Eq. (3) to be extremely useful15 when applied to the 1D problem
with the nearest neighbor interaction V1 and the next-nearest neigbor interaction V2.
This problem has been studied16 in connection with the spin version of the Hamiltonian
Eq. (1). The IM phase diagram for this model has been studied recently in Ref. 14.
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In this case � is a function of V1 and V2, so that Eq. (3) gives the IM phase
diagram in the (V1,V2)-space. We have found that the phase diagram obtained in such
a way is consistent with our extensive numerical simulations. It predicts the existence
of metallic phase at arbitrarily large values of interaction. The ground state in this
phase represents a mixture of two degenerate crystalline phases.

GAP AT NONZERO J

At large enough J , the excitation gap in the spectrum is determined by the con-
�nement quantization. On the other hand, the gap � at J = 0 is the energy of defect
and it has a non-zero limit in macroscopic system. Thus, an important question arises,
whether or not the gap has a non-zero limit right after the IM transition. The non-zero
gap would mean that the state after the transition is superconducting.

We have made a lot of computational e�orts to answer this question but the results
are still inconclusive. We have found that the gap for the 4� 8 cluster is less than for
4 � 4 cluster but the ratio is signi�cantly larger than 0.5 as would be expected from
the con�nement quantization solely.

CONCLUSIONS

We have performed a numerical study of the structural and IM phase transitions in
2D fermionic systems with Hamiltonian Eq. (1). We argue that the structural transition
on a lattice is not of the �rst order in all cases considered. We think that the origin
of the transition is an avoided crossing of the ground state and the defect states in
the Wigner crystal with the same total quasimomentum. This simple picture implies
that the critical value of J is determined by the defect with the lowest energy � at
J = 0. To illustrate our point the data for 1D systems with Coulomb interaction
and with next-nearest neighbor interactions are also presented. The possibility of the
delocalized phase above the transition to be superconducting is discussed.

REFERENCES

1. A. L. Efros, F. G. Pikus, Solid State Commun. 96, 183 (1995).
2. R. Berkovits, Y. Avishai, Europhys. Let. 29, 475 (1995).
3. D. L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994); Y. Imry, Europhys. Lett. 30, 405

(1995);
4. X. Zhu, S. G. Louie, Phys. Rev. B 52, 5863 (1995) and early references quoted therein.
5. W. Kohn, Phys. Rev.133, A171 (1964).
6. D. J. Scalapino, S. R. White, S. Zhang, Phys. Rev. B 47, 7995 (1993).
7. F. G. Pikus, A. L. Efros, Solid State Commun. 92, 485 (1994).
8. E. V. Tsiper, F. G. Pikus, and A. L. Efros, unpublished, preprint cond-mat/9512150.
9. E. V. Tsiper, A. L. Efros, unpublished, preprint cond-mat/9708150.
10. A. F. Andreev and I. M. Lifshitz, Sov. Physics JETP. 29, 1107 (1969).
11. C. N. Yang and C. P. Yang, Phys. Rev. 147, 303 (1966); 150, 327 (1966); 151, 258 (1966), and

earlier references quoted therein.
12. J. des Cloizeaux, J. Math. Phys.7, 2136 (1966).
13. B. Sutherland, B. S. Shastry, Phys. Rev. Lett.65, 1833 (1990).
14. D. Poilblanc, S. Yunoki, S. Maekawa, E. Dagotto, Phys. Rev. B 56, R1645 (1997).
15. E. V. Tsiper and A. L. Efros, to be published in J. Phys. C., preprint cond-mat/9708167.
16. V. J. Emery and C. Noguera, Phys. Rev. Lett. 60, 631 (1988); Synthetic Metals 29, F523

(1989), and earlier references quoted therein.

4


