# Computation of extremal eigenvalues of large Hermitian and Hamiltonian matrices in quantum and classical physics

E.V. Tsiper

Naval Research Laboratory & George Mason University

SCS Colloquium, George Mason University October 27, 2005

### Quantum Mechanics: a Hermitian Eigenvalue Problem



### Quantum Mechanics: a Hermitian Eigenvalue Problem

$$\frac{100,000,000}{H} \Psi = E \Psi$$

$$\mathcal{H}\psi=\epsilon\psi \longrightarrow egin{array}{c} \epsilon^{ ext{(1)}},\ \epsilon^{ ext{(2)}},\ ...,\ \epsilon^{ ext{(M)}} \ \psi^{ ext{(1)}},\ \psi^{ ext{(2)}},...,\ \psi^{ ext{(M)}} \end{array}$$

### Rayleigh-Ritz Minimum Principle



$$\epsilon^{\scriptscriptstyle (1)} = \min_{\scriptscriptstyle (\psi\psi)=1} \; (\psi \mathcal{H} \psi)$$

### Classical Mechanics: a <u>Hamiltonian</u> Eigenvalue Problem

Newton's eqs:

$$\mathcal{M}\ddot{x} = -\mathcal{K}x$$

$$\downarrow^{\downarrow}$$

$$\omega^2 \mathcal{M}x = \mathcal{K}x$$

in Hamilton form:

$$p = \omega \mathcal{M} x, \ \mathcal{T} = \mathcal{M}^{-1}$$

$$\Rightarrow \begin{bmatrix} 0 \ \mathcal{T} \\ \mathcal{K} \ 0 \end{bmatrix} \begin{bmatrix} x \\ p \end{bmatrix} = \omega \begin{bmatrix} x \\ p \end{bmatrix}$$

 $\longrightarrow$  normal frequencies  $\omega^{(1)}$ ,  $\omega^{(2)}$ , ...,  $\omega^{(M)}$ 

• all real!

#### Generalized Minimum Principle

$$\omega^{(1)} = \min_{(px)=1} \frac{(p\mathcal{T}p)}{2} + \frac{(x\mathcal{K}x)}{2}$$

### Two Problems in Linear Algebra

- Diagonalization of a Hermitian matrix by unitary transformations (rotations)
- Simultaneous diagonalization of two quadratic forms by similarity transformations (rotations + rescaling):

#### Recipe:

- 1. Rotate the basis to diagonalize one matrix
- 2. Rescale coordinates to make it a unit matrix
- 3. Rotate space to diagonalize the other matrix (the unit matrix does not change)

### Origin of Large Matrices in Quantum Mechanics

#### A. Ordinary Quantum Mechanics

• The wave function  $\psi(r)$  is an infinite vector:



• Simplest chemical bond:

$$2 \times 2$$
 matrix

$$\mathcal{H} = \begin{pmatrix} \epsilon_0 & t \\ t & \epsilon_0 \end{pmatrix}$$

### Origin of Large Matrices in Quantum Mechanics

#### B. Realistic electronic structure calculations

- Many states per atom:  $(1s + 3p + 5d) \times 2 \text{ spins} = 20$
- 10<sup>23</sup> atoms per cm<sup>3</sup>
- $\bullet$  A typical  $\sim$  10 nm nanocrystal contains about 50,000 atoms



### Origin of Large Matrices in Quantum Mechanics

#### C. Many-body quantum mechanics

For N particles

$$\psi(\mathbf{r}) \stackrel{\text{becomes}}{\longrightarrow} \psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, ..., \mathbf{r}_N) \implies \text{matrix size } M = L^N$$

Fermion symmetry reduces it to N particles in L boxes:

$$M = \begin{pmatrix} L \\ N \end{pmatrix} pprox rac{1}{\sqrt{2\pi N(1-f)}} \left[ rac{1}{f^f(1-f)^{(1-f)}} 
ight]^L$$

— still a huge number:

$$f = N/L = filling factor (< 1)$$

$$\binom{36}{1} = 36$$
,  $\binom{36}{2} = \frac{36 \times 35}{2} = 630$ , ...  $\binom{36}{12} =$ **1,251,677,700**, ...

..., 
$$\binom{36}{18} =$$
**9,075,135,300**, ...  $\binom{36}{34} = 630$ ,  $\binom{36}{35} = 36$ ,  $\binom{36}{36} = 1$ 

### An Example of Strongly-Correlated Quantum Many-Body System:

#### 2D electon gas in strong magnetic field

Lowest Landau Level:

$$\psi_m(\mathbf{r}) = \frac{1}{\sqrt{2\pi 2^m m!}} r^m e^{im\phi} e^{-r^2/4}$$

$$m = 0, 1, 2, ..., 36, ...$$



$$\mathcal{H} = \sum_{mnl} V_{mn}^{l} c_{m+l}^{\dagger} c_{n}^{\dagger} c_{n+l} c_{m}$$



[E.V. Tsiper and V.J. Goldman, Phys. Rev. B64, 165311 (2001)]

### An Example of Strongly-Correlated Quantum Many-Body System:

2D electon gas in strong magnetic field

FQHE: Fractional Quantum Hall Effect

### Fractionalization of elemental charge

$$e^* = \frac{e}{3}, \quad \frac{2e}{5}, \quad \frac{3e}{7} \dots ?$$



[E.V. Tsiper (2005), to be published]

### How was this done?

### **Extremal Eigenvalue of a Hermitian Matrix**Consider Typical Computer Limitations

- **CPU** Limitations:  $3 \text{ GHz} = 3 \times 10^9 \text{ ops/second} = 10^{14} \text{ ops/hour}$  Can be overcome by multiple parallel CPUs or by patience
- **Memory** Limitations: 2 GBytes =  $2.5 \times 10^8$  real numbers. Typically cannot be overcome
- Full diagonalization (all eigenvalues and eigenvectors)
   Need to store the M×M dense matrix
   (an answer the set of M eigenvectors is a dense matrix)

$$M \lesssim \sqrt{2.5 \times 10^8} = 16,300$$

ullet Only the ground state  $\epsilon^{(1)}$ ,  $\psi^{(1)}$  Suppose we do not need to store  ${\cal H}$  (re-compute as needed)

$$M \lesssim \frac{1}{2} (2.5 \times 10^8) \sim 100,000,000$$

### Extremal Eigenvalue of a Hermitian Matrix

#### **Concept: Power Method**

ullet All bases are equivalent: Pretend that we know the basis where  ${\cal H}$  is diagonal. An arbitrary vector

$$\psi = c_1 \psi^{(1)} + c_2 \psi^{(2)} + ... + c_M \psi^{(M)}$$
 $\mathcal{H} \psi = \epsilon^{(1)} c_1 \psi^{(1)} + \epsilon^{(2)} c_2 \psi^{(2)} + ... + \epsilon^{(M)} c_M \psi^{(M)}$ 

Upon doing

$$\mathcal{H}^k \psi = \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \dots \psi$$

all components of  $\psi$  die away exponentially with k except the one with the largest  $|\epsilon^{(i)}|$ , either  $\epsilon^{(1)}$  or  $\epsilon^{(M)}$ .

- ullet We can choose  $\epsilon^{(1)}$  or  $\epsilon^{(M)}$  by shifting the matrix  $\mathcal{H}\pm\lambda$ .
- ullet Convergence is usually slow: the exponent is  $1-\epsilon^{(2)}/\epsilon^{(1)}$ .

### **Extremal Eigenvalue of a Hermitian Matrix**Krylov Subspace

- ullet  $\mathcal{H}\psi$  is "closer" to  $\psi^{(1)}$  than  $\psi$  for an arbitrary  $\psi$ . But only "slightly."
  - $\Rightarrow$   $\psi$  turns towards  $\psi^{(1)}$  upon action of  ${\cal H}$ .

• Try to extrapolate: draw a plane through  $\psi$  and  $\mathcal{H}\psi$ ; find the best approximation to  $\psi^{(1)}$  in that plane. "Best" is in terms of  $\min(\psi\mathcal{H}\psi)$ 

• Generalize: build a subspace of  $\psi$ ,  $\mathcal{H}\psi$ ,  $\mathcal{H}^2\psi$ , ...,  $\mathcal{H}^k\psi$ ; find the best approximation to  $\psi^{(1)}$  in this *Krylov subspace*.

= Lanczos method

Krylov subspace is an "almost invariant" subspace of  ${\cal H}$ .

### **Extremal Eigenvalue of a Hermitian Matrix**Lanczos Recursion

- $\psi$ ,  $\mathcal{H}\psi$ ,  $\mathcal{H}^2\psi$ , ...,  $\mathcal{H}^k\psi$  are not orthogonal In fact, they are strongly linear-dependent
- Remarkable discovery [C. Lanczos, 1950]:
   A recursion builds an orthonormal basis in the Krylov subspace

$$oldsymbol{\psi}_{\scriptscriptstyle \mathsf{i}+1} = rac{1}{oldsymbol{eta}_{\scriptscriptstyle \mathsf{i}+1}} (\mathcal{H} oldsymbol{\psi}_{\scriptscriptstyle \mathsf{i}} - oldsymbol{lpha}_{\scriptscriptstyle \mathsf{i}} oldsymbol{\psi}_{\scriptscriptstyle \mathsf{i}-1})$$

 $lpha_i$  and  $eta_i$  are chosen to orthogonalize  $\psi_{i+1}$  to **two previous vectors**.

• Miraculously,  $\psi_{i+1}$  is orthogonal to **all**  $\psi_1$ ,  $\psi_2$ , ...:  $(\psi_i \psi_j) = \delta_{ij}$  Moreover,  $\mathcal H$  is **tridiagonal** in the new basis:

$$(\psi_i \mathcal{H} \psi_i) = \alpha_i \quad (\psi_i \mathcal{H} \psi_{i-1}) = \beta_i \quad (\psi_i \mathcal{H} \psi_j) = 0$$
 otherwise.  $\implies$  All we need to find  $\min(\psi \mathcal{H} \psi)$ .

### Extremal Eigenvalue of a Hermitian Matrix

#### **Typical Lanczos Convergence**

- ullet Start with an arbitrary  $\psi_1$
- At every step k we have a  $k \times k$  tridiagonal matrix  $(\psi_i \mathcal{H} \psi_i)$ .
- Extremal eigenvalues of  $(\psi_i \mathcal{H} \psi_j)$  give best *variational* approximation to  $\epsilon^{(1)}$  and  $\epsilon^{(M)}$ .
- ullet Corresponding eigenvectors of length k are the expansion coefficients for  $\psi_{
  m approx}$  in terms of  $\psi_{
  m i}$



- Convergence is usually exponential
- Worst-case convergence: number of iterations  $\sim \sqrt{M}$  (vary rare) Usually need 50 200 iterations to get all 14 digits.

### Lowest Eigenvalue of a Hamiltonian Matrix

#### **Generalized Variational Procedure**

Apply the same idea:

**1.** Build Krylov subspace of  $\mathcal{L}$ :  $\xi$ ,  $\mathcal{L}\xi$ ,  $\mathcal{L}^2\xi$ , ...,  $\mathcal{L}^k\xi$ :

$$\mathcal{L} = \begin{bmatrix} 0 & \mathcal{T} \\ \mathcal{K} & 0 \end{bmatrix}; \quad \xi = \begin{bmatrix} x \\ p \end{bmatrix}, \quad \mathcal{L}\xi = \begin{bmatrix} \mathcal{T}p \\ \mathcal{K}x \end{bmatrix}, \quad \mathcal{L}^2\xi = \begin{bmatrix} \mathcal{T}\mathcal{K}x \\ \mathcal{K}\mathcal{T}p \end{bmatrix}, \dots$$

2. Find the **best** approximation to  $\omega^{(1)}$ ,  $\xi^{(1)}$  within this subspace using the **minimum principle** (pTp) = (xKx)

 $\min_{(px)=1} \frac{(pTp)}{2} + \frac{(xKx)}{2}$ 

$$\stackrel{\text{leads to}}{\longrightarrow} \begin{bmatrix} 0 \ \widetilde{\mathcal{T}} \\ \widetilde{\mathcal{K}} \ 0 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \widetilde{\omega} \begin{bmatrix} c \\ d \end{bmatrix}$$

 $\widetilde{\omega}$  gives a *variational* approximation to  $\omega^{(1)}$ , and c and d are the expansion coefficients for  $x^{(1)}$  and  $p^{(1)}$  in terms of  $x_i$  and  $p_i$ , respectively

### Lowest Eigenvalue of a Hamiltonian Matrix

#### **Generalized Lanczos Recursion**

The following recursion

$$egin{aligned} x_{ ext{i}+1} &= rac{1}{eta_{ ext{i}+1}} (\mathcal{T} p_{ ext{i}} - lpha_{ ext{i}} x_{ ext{i}} - eta_{ ext{i}} x_{ ext{i}-1}) \ p_{ ext{i}+1} &= rac{1}{\delta_{ ext{i}+1}} (\mathcal{K} x_{ ext{i}} - oldsymbol{\gamma}_{ ext{i}} p_{ ext{i}} - \delta_{ ext{i}} p_{ ext{i}-1}) \end{aligned}$$

retains all the nice properties of the Hermitian Lanczos recursion and yields

$$ullet$$
 A globally bi-orthogonal basis  $\{x_{\scriptscriptstyle ec{i}},\,p_{\scriptscriptstyle ec{i}}\}$   $(x_{\scriptscriptstyle ec{i}}p_{\scriptscriptstyle ec{j}})=\delta_{\scriptscriptstyle ec{i}ec{j}}$ 

ullet Both matrices  $\widetilde{\mathcal{T}}$  and  $\widetilde{\mathcal{K}}$ 

$$(p_i \mathcal{T} p_i) = \alpha_i, \quad (p_i \mathcal{T} p_{i-1}) = \beta_i \qquad (p_i \mathcal{T} p_j) = (x_i \mathcal{K} x_j) = (x_i \mathcal{K} x_i) = \gamma_i, \quad (x_i \mathcal{K} x_{i-1}) = \delta_i \qquad = 0 \text{ otherwise.}$$

## Lowest Eigenvalue of a Hamiltonian Matrix Typical Generalized Lanczos Convergence

• Behavior very similar to the Hermitian case:



Why are we interested in this?

### Excitations of a Quantum System as Classical Oscillations of $\psi$



Consider a system driven out of equilibrium. Excitation energies

$$\Omega_{\scriptscriptstyle 21} = \epsilon^{\scriptscriptstyle (2)} - \epsilon^{\scriptscriptstyle (1)}$$
 etc.

are resonance frequencies for the evolution of the wave function  $\psi(t)$  about the ground-state equlibirum  $\psi^{(1)}$ 

#### Time Dependent quantum methods

- TDHF = Time-Dependent Hartree-Fock
- TDDFT = Time-Dependent Density Functional Theory etc. target  $\Omega_{i1}$  directly by solving equations of motion for  $\psi(t)$ .
- These equations of motion are technically classical Hamiltonian equation for small oscillations with **many** degrees of freedom.

### Excitations of a Quantum System as Classical Oscillations of $\psi$

#### Proof of Concept: Excitation spectrum of $C_{60}$



| Absorption         | TDHF        |      |
|--------------------|-------------|------|
| Experiment         | Calculation |      |
| $\hbar\Omega$ , eV | ħΩ, eV      |      |
| 3.04               | 2.874       | (5%) |
| 3.30               | 3.505       | (6%) |
| 3.78               | 3.782       | (0%) |
| 4.06               | 3.924       | (3%) |
| 4.35               | 4.287       | (1%) |
| 4.84               | 5.031       | (4%) |
| 5.46               | 5.150       | (6%) |
| 5.88               | 5.816       | (1%) |
|                    | 6.008       |      |
|                    | 6.078       |      |
| 6.36               | 6.202       | (2%) |

[E.V. Tsiper, J. Phys. B (Letter) 34, L401 (2001)]

#### **Conclusions**

• Full diagonalization of a matrix is limited to

$$\sim 16,600 \times 16,000$$

 Lanczos recursion allows to find the ground state and a few lowest-energy excited states of large Hermitian matrices up to

$$\sim 10^8 \times 10^8$$

- Lanczos method can be extended to the problem of small classical oscillations in Hamiltonian form with large number of degrees of freedom
- The latter problem appears in time-dependent quantum quantum quantum tion energies of quantum system.