Computation of extremal eigenvalues of large Hermitian and Hamiltonian matrices in quantum and classical physics

E.V. Tsiper

Naval Research Laboratory & George Mason University

SCS Colloquium, George Mason University October 27, 2005

Quantum Mechanics: a Hermitian Eigenvalue Problem

$[H] = E \Psi$

Quantum Mechanics: a Hermitian Eigenvalue Problem

Quantum Mechanics: a Hermitian Eigenvalue Problem

Rayleigh-Ritz Minimum Principle

$$\epsilon^{\scriptscriptstyle (1)} = \min_{\scriptscriptstyle (\psi\psi)=1} \left(\psi \mathcal{H}\psi
ight)$$

Newton's eqs:

$$\mathcal{M}\ddot{x} = -\mathcal{K}x$$
$$\downarrow$$
$$\omega^2 \mathcal{M}x = \mathcal{K}x$$

 \longrightarrow normal frequencies $\omega^{(1)}$, $\omega^{(2)}$, ..., $\omega^{({\sf M})}$

Newton's eqs:

in Hamilton form:

$$\mathcal{M}\ddot{x} = -\mathcal{K}x$$
 $p = \omega \mathcal{M}x, \ \mathcal{T} = \mathcal{M}^{-1}$

$$\overset{\downarrow}{\omega^2\mathcal{M}x} = \mathcal{K}x$$

$$\longrightarrow$$
 normal frequencies $\omega^{(1)}$, $\omega^{(2)}$, ..., $\omega^{(M)}$

Newton's eqs:

in Hamilton form:

. . 1

 \longrightarrow normal frequencies $\omega^{(1)}$, $\omega^{(2)}$, ..., $\omega^{(M)}$

Newton's eqs:

in Hamilton form:

 \longrightarrow normal frequencies $\omega^{(1)}, \omega^{(2)}, ..., \omega^{(M)}$

• all real!

• • 1

Newton's eqs:

in Hamilton form:

 \rightarrow normal frequencies $\omega^{(1)}, \omega^{(2)}, \dots, \omega^{(M)}$ • all real!

Generalized Minimum Principle

$$\omega^{(1)} = \min_{(px)=1} \frac{(p\mathcal{T}p)}{2} + \frac{(x\mathcal{K}x)}{2}$$

[E.V. Tsiper, JETP Letters 70, 11, 751 (1999)]

• Diagonalization of a Hermitian matrix

by unitary transformations (rotations of basis)

• **Diagonalization of a Hermitian matrix** by unitary transformations (rotations)

• **Simultaneous diagonalization of two quadratic forms** by similarity transformations (rotations + rescaling):

• **Diagonalization of a Hermitian matrix** by unitary transformations (rotations)

• Simultaneous diagonalization of two quadratic forms

by similarity transformations (rotations + rescaling):

Recipe:

- 1. Rotate the basis to diagonalize one matrix
- 2. Rescale coordinates to make it a unit matrix
- **3.** Rotate space to diagonalize the other matrix (the unit matrix does not change)

A. Ordinary Quantum Mechanics

• The wave function $\psi(r)$ *is* an infinite vector:

A. Ordinary Quantum Mechanics

• The wave function $\psi(r)$ is an infinite vector:

• Simplest chemical bond: $H + H = H_2$ $2 \times 2 \text{ matrix}$ $\mathcal{H} = \begin{pmatrix} \epsilon_0 & t \\ t & \epsilon_0 \end{pmatrix}$ $\mathcal{H} = \begin{pmatrix} \epsilon_0 & t \\ t & \epsilon_0 \end{pmatrix}$

B. Realistic electronic structure calculations

- Many states per atom: $(1s + 3p + 5d) \times 2$ spins = 20
- 10²³ atoms per cm³
- A typical \sim 10 nm nanocrystal contains about 50,000 atoms

C. Many-body quantum mechanics

C. Many-body quantum mechanics

For N particles

 $\psi(\mathbf{r}) \stackrel{\text{becomes}}{\longrightarrow} \psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, ..., \mathbf{r}_N) \implies \text{matrix size } M = L^N$

C. Many-body quantum mechanics

For N particles

$$\psi(\mathbf{r}) \stackrel{ ext{becomes}}{\longrightarrow} \psi(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3,...,\mathbf{r}_N) \; \Rightarrow \mathsf{matrix}\;\mathsf{size}\; M = L^N$$

Fermion symmetry reduces it to *N* particles in *L* boxes:

$$M = \begin{pmatrix} L \\ N \end{pmatrix} \approx \frac{1}{\sqrt{2\pi N(1-f)}} \begin{bmatrix} 1 \\ \frac{1}{f^f(1-f)^{(1-f)}} \end{bmatrix}^L,$$
$$f = N/L = filling \ factor \ (<1)$$

C. Many-body quantum mechanics

For N particles

— still a huge number:

$$\psi({f r}) \stackrel{ ext{becomes}}{
ightarrow} \psi({f r}_1,{f r}_2,{f r}_3,...,{f r}_{ ext{N}}) \;\; \Rightarrow ext{matrix size} \; M = L^N$$

Fermion symmetry reduces it to N particles in L boxes:

$$M = \begin{pmatrix} L \\ N \end{pmatrix} \approx \frac{1}{\sqrt{2\pi N(1-f)}} \left[\frac{1}{f^f (1-f)^{(1-f)}} \right]^L,$$

f = N/L = filling factor (< 1)

$$\begin{pmatrix} 36\\1 \end{pmatrix} = 36, \quad \begin{pmatrix} 36\\2 \end{pmatrix} = \frac{36 \times 35}{2} = 630, \quad \dots \quad \begin{pmatrix} 36\\12 \end{pmatrix} = \mathbf{1,251,677,700}, \quad \dots \\ \dots, \begin{pmatrix} 36\\18 \end{pmatrix} = \mathbf{9,075,135,300}, \quad \dots \quad \begin{pmatrix} 36\\34 \end{pmatrix} = 630, \quad \begin{pmatrix} 36\\35 \end{pmatrix} = 36, \quad \begin{pmatrix} 36\\36 \end{pmatrix} = 1$$

2D electon gas in strong magnetic field

2D electon gas in strong magnetic field

2D electon gas in strong magnetic field

2D electon gas in strong magnetic field

FQHE: Fractional Quantum Hall Effect

Fractionalization of elemental charge

$$e^* = \frac{e}{3}, \quad \frac{2e}{5}, \quad \frac{3e}{7} \quad \dots?$$

[E.V. Tsiper (2005), to be published]

How was this done ?

Extremal Eigenvalue of a Hermitian Matrix

Consider Typical Computer Limitations

• **CPU** Limitations: 3 GHz = 3×10^9 ops/second = 10^{14} ops/hour Can be overcome by multiple parallel CPUs or by patience

- **CPU** Limitations: 3 GHz = 3×10^9 ops/second = 10^{14} ops/hour Can be overcome by multiple parallel CPUs or by patience
- **Memory** Limitations: 2 GBytes = 2.5×10^8 real numbers. Typically cannot be overcome

- **CPU** Limitations: 3 GHz = 3×10^9 ops/second = 10^{14} ops/hour Can be overcome by multiple parallel CPUs or by patience
- **Memory** Limitations: 2 GBytes = 2.5×10^8 real numbers. Typically cannot be overcome
- Full diagonalization (all eigenvalues and eigenvectors) Need to store the M×M dense matrix (an answer — the set of M eigenvectors — *is* a dense matrix)

 $M \lesssim \sqrt{2.5 \times 10^8} = 16,300$

- **CPU** Limitations: 3 GHz = 3×10^9 ops/second = 10^{14} ops/hour Can be overcome by multiple parallel CPUs or by patience
- **Memory** Limitations: 2 GBytes = 2.5×10^8 real numbers. Typically cannot be overcome
- Full diagonalization (all eigenvalues and eigenvectors)
 Need to store the *M*×*M* dense matrix
 (an answer the set of *M* eigenvectors *is* a dense matrix)

 $M \lesssim \sqrt{2.5 \times 10^8} = 16,300$

• Only the ground state $\epsilon^{(1)}$, $\psi^{(1)}$ Suppose we do not need to store \mathcal{H} (re-compute as needed) $M \lesssim \frac{1}{2} (2.5 \times 10^8) \sim 100,000,000$

Extremal Eigenvalue of a Hermitian Matrix Concept: Power Method

• All bases are equivalent:

Pretend that we know the basis where \mathcal{H} is diagonal.

An arbitrary vector

$$\psi = c_1 \psi^{\scriptscriptstyle (1)} + c_2 \psi^{\scriptscriptstyle (2)} + \ldots + c_{\sf M} \psi^{\scriptscriptstyle ({\sf M})}$$

Extremal Eigenvalue of a Hermitian Matrix Concept: Power Method

• All bases are equivalent:

Pretend that we know the basis where \mathcal{H} is diagonal.

An arbitrary vector

$$\psi = c_1 \psi^{(1)} + c_2 \psi^{(2)} + \dots + c_M \psi^{(M)}$$
$$\mathcal{H}\psi = \epsilon^{(1)} c_1 \psi^{(1)} + \epsilon^{(2)} c_2 \psi^{(2)} + \dots + \epsilon^{(M)} c_M \psi^{(M)}$$

Extremal Eigenvalue of a Hermitian Matrix Concept: Power Method

• All bases are equivalent:

Pretend that we know the basis where \mathcal{H} is diagonal.

An arbitrary vector

$$oldsymbol{\psi} = c_{\scriptscriptstyle 1} oldsymbol{\psi}^{\scriptscriptstyle (1)} + c_{\scriptscriptstyle 2} oldsymbol{\psi}^{\scriptscriptstyle (2)} + \ldots + c_{\scriptscriptstyle \mathsf{M}} oldsymbol{\psi}^{\scriptscriptstyle (\mathsf{M})}$$

$$\mathcal{H}\psi = \epsilon^{(1)}c_1\psi^{(1)} + \epsilon^{(2)}c_2\psi^{(2)} + \ldots + \epsilon^{(M)}c_M\psi^{(M)}$$

Upon doing

$$\mathcal{H}^k\psi=\mathcal{H}\mathcal{H}\mathcal{H}\mathcal{H}\mathcal{H}\ldots\psi$$

all components of ψ die away exponentially with k except the one with the largest $|\epsilon^{(i)}|$, either $\epsilon^{(1)}$ or $\epsilon^{(M)}$.

- We can choose $\epsilon^{(1)}$ or $\epsilon^{(M)}$ by shifting the matrix $\mathcal{H}\pm\lambda$.
- ullet Convergence is usually slow: the exponent is $1-\epsilon^{(2)}/\epsilon^{(1)}.$

Extremal Eigenvalue of a Hermitian Matrix

Krylov Subspace

Extremal Eigenvalue of a Hermitian Matrix Krylov Subspace

- $\mathcal{H}\psi$ is "closer" to $\psi^{(1)}$ than ψ for an arbitrary ψ . But only "slightly."
 - $\Rightarrow \psi$ turns towards $\psi^{(1)}$ upon action of $\mathcal H_{+}$

Extremal Eigenvalue of a Hermitian Matrix Krylov Subspace

- $\mathcal{H}\psi$ is "closer" to $\psi^{(1)}$ than ψ for an arbitrary ψ . But only "slightly."
 - $\Rightarrow \psi$ turns towards $\psi^{(1)}$ upon action of $\mathcal H.$

 \downarrow

• Try to extrapolate: draw a plane through ψ and $\mathcal{H}\psi$; find the best approximation to $\psi^{(1)}$ in that plane. "Best" is in terms of $\min(\psi \mathcal{H}\psi)$

Extremal Eigenvalue of a Hermitian Matrix Krylov Subspace

- $\mathcal{H}\psi$ is "closer" to $\psi^{(1)}$ than ψ for an arbitrary ψ . But only "slightly."
 - $\Rightarrow \psi$ turns towards $\psi^{(1)}$ upon action of $\mathcal H$.

 \downarrow

- Try to extrapolate: draw a plane through ψ and $\mathcal{H}\psi$; find the best approximation to $\psi^{(1)}$ in that plane. "Best" is in terms of $\min(\psi \mathcal{H}\psi)$
- Generalize: build a subspace of ψ , $\mathcal{H}\psi$, $\mathcal{H}^2\psi$, ..., $\mathcal{H}^k\psi$; find the best approximation to $\psi^{(1)}$ in this *Krylov subspace*.

= Lanczos method

Krylov subspace is an "almost invariant" subspace of \mathcal{H} .

Extremal Eigenvalue of a Hermitian Matrix Lanczos Recursion

• ψ , $\mathcal{H}\psi$, $\mathcal{H}^2\psi$, ..., $\mathcal{H}^k\psi$ are not orthogonal In fact, they are strongly linear-dependent

Extremal Eigenvalue of a Hermitian Matrix Lanczos Recursion

- ψ , $\mathcal{H}\psi$, $\mathcal{H}^{2}\psi$, ..., $\mathcal{H}^{k}\psi$ are not orthogonal In fact, they are strongly linear-dependent
- Remarkable discovery [C. Lanczos, 1950]: A recursion builds an orthonormal basis in the Krylov subspace

$$oldsymbol{\psi}_{ ext{i+1}} = rac{1}{oldsymbol{eta}_{ ext{i+1}}} (\mathcal{H} oldsymbol{\psi}_{ ext{i}} - oldsymbol{lpha}_{ ext{i}} oldsymbol{\psi}_{ ext{i}} - oldsymbol{eta}_{ ext{i}} oldsymbol{\psi}_{ ext{i}})$$

 $lpha_i$ and eta_i are chosen to orthogonalize ψ_{i+1} to **two previous vectors**.

Extremal Eigenvalue of a Hermitian Matrix Lanczos Recursion

- ψ , $\mathcal{H}\psi$, $\mathcal{H}^{2}\psi$, ..., $\mathcal{H}^{k}\psi$ are not orthogonal In fact, they are strongly linear-dependent
- Remarkable discovery [C. Lanczos, 1950]: A recursion builds an orthonormal basis in the Krylov subspace

$$oldsymbol{\psi}_{ ext{i+1}} = rac{1}{oldsymbol{eta}_{ ext{i+1}}} (\mathcal{H}oldsymbol{\psi}_{ ext{i}} - oldsymbol{lpha}_{ ext{i}}oldsymbol{\psi}_{ ext{i}} - oldsymbol{eta}_{ ext{i}}oldsymbol{\psi}_{ ext{i}})$$

 $lpha_{i}$ and eta_{i} are chosen to orthogonalize ψ_{i+1} to **two previous vectors**.

• Miraculously, ψ_{i+1} is orthogonal to **all** ψ_1 , ψ_2 , ...: $(\psi_i \psi_j) = \delta_{ij}$ Moreover, \mathcal{H} is **tridiagonal** in the new basis:

 $(\psi_i \mathcal{H} \psi_i) = \alpha_i \quad (\psi_i \mathcal{H} \psi_{i-1}) = \beta_i \quad (\psi_i \mathcal{H} \psi_j) = 0$ otherwise. \implies All we need to find $\min(\psi \mathcal{H} \psi)$.

Extremal Eigenvalue of a Hermitian Matrix Typical Lanczos Convergence

- Start with an arbitrary ψ_1
- At every step k we have a $k \times k$ tridiagonal matrix $(\psi_i \mathcal{H} \psi_j)$.
- Extremal eigenvalues of $(\psi_i \mathcal{H} \psi_j)$ give best *variational* approximation to $\epsilon^{(1)}$ and $\epsilon^{(M)}$.
- Corresponding eigenvectors of length k are the expansion coefficients for $\psi_{\rm approx}$ in terms of $\psi_{\rm i}$

Extremal Eigenvalue of a Hermitian Matrix Typical Lanczos Convergence

- Start with an arbitrary ψ_1
- At every step k we have a $k \times k$ tridiagonal matrix $(\psi_i \mathcal{H} \psi_j)$.
- Extremal eigenvalues of $(\psi_i \mathcal{H} \psi_j)$ give best *variational* approximation to $\epsilon^{(1)}$ and $\epsilon^{(M)}$.
- Corresponding eigenvectors of length k are the expansion coefficients for $\psi_{\rm approx}$ in terms of $\psi_{\rm i}$
- Convergence is usually exponential
- Worst-case convergence: number of iterations $\sim \sqrt{M}$ (vary rare) Usually need 50 — 200 iterations to get all 14 digits.

Lowest Eigenvalue of a Hamiltonian Matrix

Generalized Variational Procedure

Apply the same idea:

1. Build Krylov subspace of \mathcal{L} : ξ , $\mathcal{L}\xi$, $\mathcal{L}^2\xi$, ..., $\mathcal{L}^k\xi$:

$$\mathcal{L} = \begin{bmatrix} 0 \ \mathcal{T} \\ \mathcal{K} \ 0 \end{bmatrix}; \quad \xi = \begin{bmatrix} x \\ p \end{bmatrix}, \quad \mathcal{L}\xi = \begin{bmatrix} \mathcal{T}p \\ \mathcal{K}x \end{bmatrix}, \quad \mathcal{L}^2\xi = \begin{bmatrix} \mathcal{T}\mathcal{K}x \\ \mathcal{K}\mathcal{T}p \end{bmatrix}, \dots$$

Lowest Eigenvalue of a Hamiltonian Matrix

Generalized Variational Procedure

Apply the same idea:

1. Build Krylov subspace of \mathcal{L} : ξ , $\mathcal{L}\xi$, $\mathcal{L}^2\xi$, ..., $\mathcal{L}^k\xi$:

$$\mathcal{L} = \begin{bmatrix} 0 \ \mathcal{T} \\ \mathcal{K} \ 0 \end{bmatrix}; \quad \xi = \begin{bmatrix} x \\ p \end{bmatrix}, \quad \mathcal{L}\xi = \begin{bmatrix} \mathcal{T}p \\ \mathcal{K}x \end{bmatrix}, \quad \mathcal{L}^2\xi = \begin{bmatrix} \mathcal{T}\mathcal{K}x \\ \mathcal{K}\mathcal{T}p \end{bmatrix}, \dots$$

2. Find the **best** approximation to $\omega^{(1)}$, $\xi^{(1)}$ within this subspace using the **minimum principle** $(pTp) \quad (xKx)$

$$\min_{px)=1} \frac{(p\mathcal{T}p)}{2} + \frac{(x\mathcal{K}x)}{2}$$

Lowest Eigenvalue of a Hamiltonian Matrix

Generalized Variational Procedure

Apply the same idea:

1. Build Krylov subspace of \mathcal{L} : ξ , $\mathcal{L}\xi$, $\mathcal{L}^2\xi$, ..., $\mathcal{L}^k\xi$:

$$\mathcal{L} = \begin{bmatrix} 0 \ \mathcal{T} \\ \mathcal{K} \ 0 \end{bmatrix}; \quad \xi = \begin{bmatrix} x \\ p \end{bmatrix}, \quad \mathcal{L}\xi = \begin{bmatrix} \mathcal{T}p \\ \mathcal{K}x \end{bmatrix}, \quad \mathcal{L}^2\xi = \begin{bmatrix} \mathcal{T}\mathcal{K}x \\ \mathcal{K}\mathcal{T}p \end{bmatrix}, \dots$$

2. Find the **best** approximation to $\omega^{(1)}$, $\xi^{(1)}$ within this subspace using the **minimum principle** $(\rho T \rho) = (x \mathcal{K} x)$

$$\min_{(px)=1} \frac{(p\mathcal{T}p)}{2} + \frac{(x\mathcal{K}x)}{2}$$

$$\stackrel{\text{leads to}}{\longrightarrow} \left[\begin{array}{c} 0 \ \widetilde{\mathcal{T}} \\ \widetilde{\mathcal{K}} \ 0 \end{array} \right] \left[\begin{array}{c} c \\ d \end{array} \right] = \widetilde{\omega} \left[\begin{array}{c} c \\ d \end{array} \right]$$

 $\widetilde{\omega}$ gives a *variational* approximation to $\omega^{(1)}$, and *C* and *d* are the expansion coefficients for $x^{(1)}$ and $p^{(1)}$ in terms of x_i and p_i , respectively

Lowest Eigenvalue of a Hamiltonian Matrix Generalized Lanczos Recursion

The following recursion

$$egin{aligned} & x_{ ext{i}+1} = rac{1}{eta_{ ext{i}+1}}(\mathcal{T}p_{ ext{i}}-lpha_{ ext{i}}x_{ ext{i}}-eta_{ ext{i}}x_{ ext{i}-1}) \ & p_{ ext{i}+1} = rac{1}{\delta_{ ext{i}+1}}(\mathcal{K}x_{ ext{i}}-eta_{ ext{i}}p_{ ext{i}}-\delta_{ ext{i}}p_{ ext{i}-1}) \end{aligned}$$

retains all the nice properties of the Hermitian Lanczos recursion and yields

- A globally bi-orthogonal basis $\{x_i, p_i\}$ $(x_i p_i) = \delta_{ii}$
- Both matrices \mathcal{T} and \mathcal{K}

 $(p_i \mathcal{T} p_i) = \alpha_i, \ (p_i \mathcal{T} p_{i-1}) = \beta_i \qquad (p_i \mathcal{T} p_i) = (x_i \mathcal{K} x_i) = \alpha_i$ $(x_i \mathcal{K} x_i) = \gamma_i, \quad (x_i \mathcal{K} x_{i-1}) = \delta_i = 0$ otherwise.

Lowest Eigenvalue of a Hamiltonian Matrix Typical Generalized Lanczos Convergence

• Behavior very similar to the Hermitian case:

Lowest Eigenvalue of a Hamiltonian Matrix Typical Generalized Lanczos Convergence

• Behavior very similar to the Hermitian case:

Why are we interested in this ?

Excitations of a Quantum System as Classical Oscillations of ψ

Consider a system driven out of equilibrium. Excitation energies

$$\Omega_{\scriptscriptstyle 21} = \epsilon^{\scriptscriptstyle (2)} - \epsilon^{\scriptscriptstyle (1)}$$
 etc.

are resonance frequencies for the evolution of the wave function $\psi(t)$ about the ground-state equilibrium $\psi^{(1)}$

Excitations of a Quantum System as Classical Oscillations of ψ

Consider a system driven out of equilibrium. Excitation energies

$$\Omega_{\scriptscriptstyle 21} = \epsilon^{\scriptscriptstyle (2)} - \epsilon^{\scriptscriptstyle (1)}$$
 etc.

are resonance frequencies for the evolution of the wave function $\psi(t)$ about the ground-state equilibirum $\psi^{(1)}$

Time Dependent quantum methods

- TDHF = Time-Dependent Hartree-Fock
- TDDFT = Time-Dependent Density Functional Theory etc. target Ω_{i1} directly by solving *equations of motion for* $\psi(t)$.
- These equations of motion are technically classical Hamiltonian equation for small oscillations with **many** degrees of freedom.

Excitations of a Quantum System as Classical Oscillations of ψ

Proof of Concept: Excitation spectrum of C₆₀

$N_{\rm e} = 240$ TDHF: M = 28,800	Absorption Experiment ħΩ, eV 3.04	TDHF Calculation $\hbar\Omega$, eV 2.874 (5%)
	3.30 3.78	3.505 (6%)
- T2g T1g Gg Hg T2u Gu Hu T1u Au Ag -	4.06	3.924 (3%)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.35 4.84	4.287 (1%) 5.031 (4%)
>a	5.46	5.150 (6%)
	5.88	5.816 (1%)
2		6.078
0 opt. allowed	6.36	6.202 (2%)

[E.V. Tsiper, J. Phys. B (Letter) 34, L401 (2001)]

Conclusions

- Full diagonalization of a matrix is limited to $\sim 16,600 \times 16,000$
- Lanczos recursion allows to find the ground state and a few lowest-energy excited states of large Hermitian matrices up to

$\sim 10^8 imes 10^8$

- Lanczos method can be extended to the problem of small classical oscillations in Hamiltonian form with large number of degrees of freedom
- The latter problem appears in time-dependent quantum qnsatze that target directly the excitation energies of quantum system.