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Classical Mechanics:
a Hamiltonian Eigenvalue Problem

Newton's egs: In Hamilton form:
=wMx, T=M"
Mx = —Kx P -
0 X X
i = kol [p =415
W Mx = Kx KOJLp P
— normal frequencies W'V, w®, ..., w™ e all real!

Generalized Minimum Principle
(PTP) | (XKx)

WY = min

(px)=1 2 2

[E.V. Tsiper, JETP Letters 70, 11, 751 (1999)]
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Two Problems in Linear Algebra

e Diagonalization of a Hermitian matrix
by unitary transformations (rotations)

¢ Simultaneous diagonalization of two quadratic forms
by similarity transformations (rotations 4+ rescaling):

Recipe:

1. Rotate the basis to diagonalize one matrix

2. Rescale coordinates to make it a unit matrix

3. Rotate space to diagonalize the other matrix
(the unit matrix does not change)
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A. Ordinary Quantum Mechanics

e The wave function (r)
IS an infinite vector:
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Origin of Large Matrices in
Quantum Mechanics

A. Ordinary Quantum Mechanics

e The wave function (r)
IS an infinite vector:

e Simplest chemical bond:

2 X 2 matrix

et
Hzo

Q(r)

Y(r)

/]
|
1
‘
/
|

Amﬂ”ﬂ/”

|“||\|HHHH||M

\w/ Y -

€10 = €p




Origin of Large Matrices in
Quantum Mechanics

B. Realistic electronic structure calculations

e Many states per atom:
(1s +3p + 5d) x 2 spins = 20

e 1073 atoms per cm?

e A typical ~ 10 nm nanocrystal
contains about 50,000 atoms
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Origin of Large Matrices in
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C. Many-body quantum mechanics
For N particles

Y(r) becﬂes W(ry, o, 13, ..., 7y) = matrix size M = LN

Fermion symmetry reduces it to N particles in L boxes:

= () = = ra— ]

: f = N/L = filling factor (< 1
— still a huge number: / Hing r(<1)

(36> _ 35 (36> _ 30X 65 (36) _ 1,251,677,700, ..
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An Example of Strongly-Correlated
Quantum Many-Body System:

2D electon gas in strong magnetic field
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[E.V. Tsiper and V.J. Goldman, Phys. Rev. B64, 165311 (2001)]
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An Example of Strongly-Correlated
Quantum Many-Body System:

2D electon gas in strong magnetic field

FQHE: Fractional
Quantum Hall Effect

Fractionalization of

elemental charge
., € 2e 3e
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3 b 7

[E.V. Tsiper (2005), to be published]

I\/I=lO4
M:105

Exac:'[8 9
(M~10-10)

+0

R R

| |
021/301
o6 —+— 0:2/501

1414141414141414141 \

12

190 200 210 220 230 240 250 260 270 280 290
total angular momentum m



How was this done ? \



Extremal Eigenvalue of a Hermitian Matrix

Consider Typical Computer Limitations



Extremal Eigenvalue of a Hermitian Matrix

Consider Typical Computer Limitations

e CPU Limitations: 3 GHz = 3 x 10° ops/second = 10'* ops/hour
Can be overcome by multiple parallel CPUs or by patience



Extremal Eigenvalue of a Hermitian Matrix

Consider Typical Computer Limitations

e CPU Limitations: 3 GHz = 3 x 10° ops/second = 10'* ops/hour
Can be overcome by multiple parallel CPUs or by patience

e Memory Limitations: 2 GBytes = 2.5 x 108 real numbers.
Typically cannot be overcome



Extremal Eigenvalue of a Hermitian Matrix

Consider Typical Computer Limitations

e CPU Limitations: 3 GHz = 3 x 10° ops/second = 10'* ops/hour
Can be overcome by multiple parallel CPUs or by patience

e Memory Limitations: 2 GBytes = 2.5 x 108 real numbers.
Typically cannot be overcome

e Full diagonalization (all eigenvalues and eigenvectors)
Need to store the M x M dense matrix
(an answer — the set of M eigenvectors — is a dense matrix)

M < /2.5 x 108 = 16, 300




Extremal Eigenvalue of a Hermitian Matrix

Consider Typical Computer Limitations

e CPU Limitations: 3 GHz = 3 x 10° ops/second = 10'* ops/hour
Can be overcome by multiple parallel CPUs or by patience

e Memory Limitations: 2 GBytes = 2.5 x 108 real numbers.
Typically cannot be overcome

e Full diagonalization (all eigenvalues and eigenvectors)
Need to store the M x M dense matrix
(an answer — the set of M eigenvectors — is a dense matrix)

M < /2.5 x 108 = 16, 300

e Only the ground state €V, ¢V
Suppose we do not need to store H (re-compute as needed)

1
Ms 3 (2.5 x 10°) ~ 100, 000, 000
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Extremal Eigenvalue of a Hermitian Matrix

Concept: Power Method

e All bases are equivalent:
Pretend that we know the basis where H is diagonal.
An arbitrary vector

Y=y + o + .+ g™

)

?—[’lp p— €<1)C1,lp(1) _|_ 6(2)C2¢(2) _|_ _|_ G(M)CMQP(M)

Upon doing
Ho Y = HHHHH.. 4

all components of 9 die away exponentially with
the one with the largest \6(')\, either €M) or €M),

k except

e We can choose € or €™ by shifting the matrix 7, -

=\,

e Convergence is usually slow: the exponent is 1 — 6(2)/6(1).
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Extremal Eigenvalue of a Hermitian Matrix
Krylov Subspace

o His “closer” to WV than 4 for an arbitrary 1.
But only “slightly.”

— 1) turns towards 1Y) upon action of H.

U
e Try to extrapolate: draw a plane through ¢ and H4Y;

find the best approximation to ’LP(D In that plane.
“Best” is in terms of min(YHY)

e Generalize: build a subspace of Y, H, H?, ..., H Y,
find the best approximation to ’(P(l) In this Krylov subspace.

— Lanczos method l

Krylov subspace is an “almost invariant” subspace of H.
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Extremal Eigenvalue of a Hermitian Matrix
Lanczos Recursion

o W, H, H?Y, ..., H*Y are not orthogonal

In fact, they are strongly linear-dependent

e Remarkable discovery [C. Lanczos, 1950]:
A recursion builds an orthonormal basis in the Krylov subspace

1
Bisa

Y = (7‘["/4 — oY — ,Biwi—l)

a; and G, are chosen to orthogonalize Y., to two previous vectors.

e Miraculously, ¥+ is orthogonal to all ¥y, ¥», ... (V) = 0,
Moreover, H is tridiagonal in the new basis:

(YHY) = (YHYL) =06 (YHY) =0 otherwise.
—> All we need to find min(yYHY).
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Typical Lanczos Convergence

e Start with an arbitrary ¢

e At every step k we have a kx k

tridiagonal matrix (Y HY,).

e Extremal eigenvalues of (HY;)
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Extremal Eigenvalue of a Hermitian Matrix

Typical Lanczos Convergence

e Start with an arbitrary ¢ 14

e At every step k we have a kx k 21

tridiagonal matrix (Y HY,).

e Extremal eigenvalues of (HY;)
give best variational approxima-

tion to €Y and €M,

Ritz Eigenvalues
(@) o B

N
T

e Corresponding eigenvectors of
length k are the expansion coeffi- .

N
T

cients for P, in terms of P, ° > Meration®

e Convergence Is usually exponential

e \Worst-case convergence: number of iterations ~ v M (vary rare)
Usually need 50 — 200 terations to get all 14 digits.
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Lowest Eigenvalue of a Hamiltonian Matrix

Generalized Variational Procedure

Apply the same idea:
1. Build Krylov subspace of L: &, L&, L€, ..., LK

- 27 e ) e[ - ).

2. Find the best approximation to w“), 5(1) within this subspace

using the minimum principle (pTp) (xKx)
min +
(px)=1 2 2
leads, to _ 0 T [c _ o€
Kol|ld| ~|d

(W gives a variational approximation to w(l), and
C and d are the expansion coefficients for x1) and ,D(l)
In terms of X, and p;, respectively



Lowest Eigenvalue of a Hamiltonian Matrix

Generalized Lanczos Recursion

The following recursion

1
Xir1 — F(Tpi — OX — IBiXi—l)
|1+1

Pi1 = 5 (ICXi — Yibi — 5iPi-1)

I+1

retains all the nice properties of the Hermitian Lanczos recursion
and yields

e A globally bi—orthogonaINbasis {Xi, ,Di} (Xi,DJ-) — 50’

e Both matrices T and /C
(pTp)=a, (pTp.) =06  (pTp)=(XKx)=
(XKx) =7, (xKx.) =20 = 0 otherwise.



Lowest Eigenvalue of a Hamiltonian Matrix

Typical Generalized Lanczos Convergence

e Behavior very similar to the Hermitian case:
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Lowest Eigenvalue of a Hamiltonian Matrix

Typical Generalized Lanczos Convergence

e Behavior very similar to the Hermitian case:
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Why are we interested in this ?
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Excitations of a Quantum System
as Classical Oscillations of 9

Consider a system driven out of equilib-
rium. Excitation energies

hv
) QQl — 6(2) - 6(1) etc.

are resonance frequencies for the evolu-
tion of the wave function 9(t) about
the ground-state equlibirum 1)

Time Dependent quantum methods

e [DHF = Time-Dependent Hartree-Fock
e [DDFT = Time-Dependent Density Functional Theory etc.
target 2 directly by solving equations of motion for ’L/J(t )

e [ hese equations of motion are technically classical Hamiltonian
equation for small oscillations with many degrees of freedom.



Excitations of a Quantum System
as Classical Oscillations of 9

Proof of Concept: Excitation spectrum of Cg,

P
Ne = 240 Absorption TDHF
TDHF: Experiment Calculation
‘ M = 25 800 A eV A, eV
3.04 2.874 (5%)
/ 3.30 3.505 (6%)
3.78 3.782 (0%)
- T29 Tlg Gg Hg T2u Gu Hu Tlu Au Ag A 4.06 3.924 (3%)
7L — - = = _ 4.35 4.287 (1%)
SfrE=s===25=5° 7 1 4.84 5.031 (4%)
05 = T = T - = = & . 5.46 5.150 (6%)
4 - — = = === = — — ] 5.88 5.816 (1%)
w3 I 6.008
2r . — — = 6.078
' Coptalowed | ¢ .36 6.202 (2%)

[E.V. Tsiper, J. Phys. B (Letter) 34, L401 (2001)]



Conclusions

e Full diagonalization of a matrix is limited to
~ 16,600 x 16, 000

e | anczos recursion allows to find the ground state
and a few lowest-energy excited states of large
Hermitian matrices up to

~ 108 x 10°

e | anczos method can be extended to the problem
of small classical oscillations in Hamiltonian form
with large number of degrees of freedom

e [he latter problem appears in time-dependent
quantum gnsatze that target directly the excita-
tion energies of quantum system.



