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Abstract
It is shown that the lowest random phase approximation (RPA) excitation
energies of a quantum many-fermion system can be obtained by minimizing an
effective classical energy functional. The idea is based on an analogy between
the RPA and classical Hamiltonian equations of motion. Generalized Lanczos
recursion allows the minimum to be found very efficiently. The technique is
used to find the electronic excitation spectrum of the C60 molecule.

The random phase approximation (RPA) is central to the theory of excitations in correlated
many-particle systems [1, 2]. It is widely used to describe correlation effects in the linear
response of nuclei [3,4], atoms [5,6], molecules [7–10], nanoclusters [11,12], semiconductor
quantum dots [13], quantum wells [14] and bulk materials [15]. Large systems of RPA-type
equations are of particular significance in the photochemistry of biological molecules, which
is governed by the configuration of excited-state adiabatic surfaces [16, 17].

RPA excitation energies are obtained as the eigenvalues of a non-Hermitian matrix [3],(
A B

−B∗ −A∗

)
(1)

which I assume to be real for simplicity. The N × N symmetric matrices A and B describe
particle–particle interactions. Their matrix elements are simple combinations of the two-
particle interaction matrix elements of the Hamiltonian in the basis of Hartree–Fock (HF)
orbitals.

RPA problem, which for linear response is equivalent to the time-dependent Hartree–
Fock (TDHF), is considered to be much more difficult than the underlying static HF problem,
because the size of the matrix (1) is much larger than the size of the corresponding Fock matrix.
Indeed, in contrast to the HF, where the number of equations scales linearly with the number of
particles, the size 2N of the matrix (1) grows quadratically with the size of the single-particle
Hilbert space. This rules out diagonalization of the matrix (1) for relatively large systems.

For small systems, the non-Hermitian eigenvalue problem can be transformed into the
Hermitian eigenvalue problem for the matrix (A+B)1/2(A−B)(A+B)1/2 [18]. However, the
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operation of taking the square root of a matrix requires its full diagonalization. In reality, a full
RPA solution is often prohibitive, since the size of the RPA matrix is large. For example, the
valence shell of the C60 molecule consists of 240 electrons that occupy 240 spin-degenerate
molecular orbitals. The solution of HF equations requires diagonalization of a Hermitian
Fock matrix of size 240 × 240. In contrast, the RPA matrix (1) in this case has dimensions
28 800 × 28 800.

On the other hand, full solution of RPA equations is not always necessary, since in many
cases only a few low-energy excitonic states are of interest. Thus, the problem is to find only
a few extremal eigenvalues and eigenvectors of the matrix (1)—a task similar to a standard
problem in quantum mechanics.

In quantum mechanics extremal eigenvalues of a Hermitian matrix H are determined by
the Rayleigh–Ritz minimum principle,

εmin = min
(ψψ)=1

(ψHψ) (2)

where the minimum is taken over all vectors ψ normalized as (ψψ) = 1. When the set of ψ
is restricted to a certain subspace K, equation (2) yields a variational approximation to εmin.
When K is chosen to be a Krylov subspace of the matrix H this procedure is equivalent to the
famous Lanczos method [19, 20].

Unfortunately, no general minimum principle exists for eigenvalues of non-Hermitian
matrices [21]. In addition, non-Hermitian matrices may have complex eigenvalues or may not
be diagonalizable at all.

It has been greatly overlooked that, although the RPA-type matrix is non-Hermitian, its
block paired structure gives it some properties similar to the Hermitian matrices. For example,
when the matricesA±B are both positive definite, the spectrum of (1) consists ofN real pairs
±ω [31].

The paired structure of (1) can be exploited to transform RPA equations into the form
of Hamiltonian equations of motion for classical oscillations. Substituting T = A + B and
K = A− B we get

Tp = ωq, Kq = ωp. (3)

The vectors q and p play the role of the conjugate canonical coordinates and momenta, while
K and T are the matrices of stiffness and kinetic coefficients respectively. Equations (3)
describe the motion of a classical Harmonic oscillator near a stationary point. Thus, the lowest
excitation energy of a quantum system corresponds to the lowest frequency of oscillations of
an effective classical Hamiltonian oscillator near the equilibrium. This observation allows us
to apply all the machinery of the classical Hamiltonian dynamics to the RPA problem.

The lowest frequency of a harmonic Hamiltonian system equals the minimum of its total
energy over all phase-space configurations {p, q} normalized by (pq) = 1:

ωmin = min
(pq)=1

(pTp)

2
+
(qKq)

2
. (4)

Indeed, variation of (4) with respect to p and q yields Hamiltonian equations of motion (3).
The two terms in the right-hand side are simply the kinetic and the potential energy of the
Harmonic oscillator with coordinates q and momenta p.

From the mathematical point of view, the minimum principle (4) can be viewed as a
generalization of the Rayleigh minimum principle (2) to the class of non-Hermitian RPA-type
eigenvalue problems. In a formal limit T = K , the problem becomes Hermitian, the minimum
is achieved at p = q, and equation (4) transforms into equation (2).

From the physical point of view, equation (4) constitutes a surprising result: the lowest
excitation energy of a quantum system, which is the difference of its total energies in the excited
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and ground states in turn equals (within the RPA) the minimum of an effective classical energy
functional.

The stationary point of the oscillator is stable when T and K are positive definite, which
in turn makes all eigenfrequencies real. Equation (4) always gives positive ωmin, since both
terms in the right-hand side are positive at any p and q. This makes transparent the result of
Chi’s theorem [31].

In fact, the variational principle for RPA problems has been known for a long time. It was
suggested by Thouless back in 1961 and reads [3]

ωmin = min
{x,y}

(x, y)

(
A B

B A

) (
x

y

)

|(xx)− (yy)| . (5)

The minimum is to be taken over all N -vectors x and y. The minimum always exists, since
the HF stability condition keeps the numerator positive [3]. Note that the denominator can be
arbitrarily small, and therefore the expression has no maximum. The minimum principle (4)
is equivalent to the Thouless minimum principle (5).

The HF stability condition is usually expressed as the positive definiteness of the 2N×2N
block matrix in the mumerator of equation (5). In this case the stationary point of the HF energy
functional is stable, i.e. it corresponds to a true (global or local) minimum. The HF stability
condition is apparently equivalent to the condition for the stationary point of the effective
classical oscillator to be stable.

The minimum principle (4) can be used as a basis for building the variationally stable
Lanczos method, in complete analogy with the Hermitian case [20, 32]. It is straightforward
to verify that the following recursion:

qi+1 = β−1
i+1(Tpi − αiqi − βiqi−1) (6a)

pi+1 = δ−1
i+1(Kqi − γipi − δipi−1) (6b)

generates configuration space vectors (qi, pi) that span the Krylov subspace of the eigenvalue
problem (3). When four coefficients αi , βi , γi , and δi are chosen at each step i to ensure
(qi+1pi) = (qi+1pi−1) = (pi+1qi) = (pi+1qi−1) = 0, the vectors pi , qi form a biorthogonal
basis, (piqj ) = δij , and the matrices K̃ij = (qiKqj ) and T̃ij = (piTpj ) are symmetric
tridiagonal, with the only nonzero matrix elements T̃ii = αi , T̃i,i−1 = T̃i−1,i = βi , K̃ii = γi ,
and K̃i,i−1 = K̃i−1,i = δi . Expanding q = ∑

ciqi and p = ∑
dipi , we arrive at the 2n× 2n

eigenvalue problem

T̃ d = ω̃c, K̃c = ω̃d (7)

which has the same structure as (3). It is the direct analogue of the Rayleigh–Ritz eigenvalue
problem in the Hermitian Lanczos method [20]. The lowest positive eigenvalue ω̃min of (7)
gives the approximation to the true lowest frequency ωmin.

When the lowest-frequency normal mode q(1), p(1) is found, the second-lowest normal
mode q(2), p(2) can be obtained by choosing initial vectors q1 and p1 orthogonal to p(1) and
q(1), respectively. As follows from equations (6) such a choice causes all vectors qi and pi
to remain orthogonal to p(1) and q(1). An oblique projection can be used to correct for the
loss of orthogonality with respect to p(1) and q(1) that may occur at large n. Namely, the
necessary amounts of q(1) and p(1) should be subtracted from qi and pi respectively, to ensure
(qip

(1)) = (piq
(1)) = 0. Higher-frequency RPA solutions can be found one by one in this

way.
The problem of the selective computation of a few low-energy excitations in molecules and

other quantum many-particle systems has attracted a great deal of effort [22–30]. The crucial
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Figure 1. The geometry of C60 is completely determined by the single- and double-bond lengths.

new feature of the present approach is the minimum principle equation (4) that brings it the
stability of a variational procedure. The variational character assures that the approximation
ω̃min is always greater than the exact value. On the other hand, due to the same variational
character, ω̃min decreases monotonously with increasing size n of the Krylov subspace. The
accuracy is found to improve exponentially with n, in direct analogy with the Hermitian
Lanczos technique.

In order to demonstrate the computational power of the method I apply it to obtain the
singlet excitation spectrum of the fullerene C60 molecule. Even with the great amount of
attention this molecule has received in the past few years [33], the calculations of the excited
states of C60 reported so far are limited [24, 34–36]. On the other hand, the first-principle
semiempirical calculation of the RPA spectrum of C60 is a very modest example for the power
of the new technique.

The Hamiltonian matrix elements depend on the geometry of the molecule, which in turn
is completely determined by the single- and double-bond lengths (see figure 1), chosen to
have experimental values of 1.46 and 1.455 Å [33] respectively. The matrix elements were
computed using the INDO/S approximation [37, 38], designed to yield a good description of
the excitation spectra of π -conjugated molecules within the RPA [7–10].

The new technique has allowed one to easily solve RPA equations in the entire valence
space of the molecule. Figure 2 shows the complete excitation spectrum obtained. A total of
600 singlet excited states have been computed sequentially using equations (6) and (7). The
technique was found to deliver RPA excited states at an expense comparable to solving the
static HF equations for the ground state2.

Table 1 provides a comparison of the results to the available experimental data. The
energies of the optically allowed transitions obtained match the positions of the features
observed in the linear absorption of C60 to within a few percent [39]. The high symmetry
of the molecule causes the majority of states to be optically dark. Only the states of T1u

symmetry have nonzero oscillator strengths and may show up in linear absorption [33]. It
seems that the abundance of the singlet optically dark states in C60 below the first optically
allowed transition has not been fully realized [33].

The problem could have been simplified by taking symmetry considerations into account

2 The calculation was performed on a DEC Alpha 500 au workstation. The solution to the static HF equations took
about 2 min CPU time compared to about 6 min CPU time per excited state. Note that the storage capacity for the RPA
matrix of size 28 800 × 28 800 would require 6.3 Gigabytes of computer memory, which at the time of calculation
(November 1999) was only available on supercomputers. The generalized Lanczos recursion (6) allows one to avoid
having to store the full matrix in memory, since it only requires evaluation of matrix-vector products Tp andKq from
time to time.
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Figure 2. The low-energy part of the RPA excitation spectrum of C60. Only T1u states have nonzero
oscillator strengths.

Table 1. Experimental and theoretical electronic excitation energies of C60. Experimental values
are from the linear absorption in n-hexane [39]. The percentage values are the deviations with
respect to the experiment.

Absorption experiment [39] RPA solution
h̄ω (eV) h̄ω (eV)

3.04 2.874 (5%)
3.30 3.505 (6%)
3.78 3.782 (0%)
4.06 3.924 (3%)
4.35 4.287 (1%)
4.84 5.031 (4%)
5.46 5.150 (6%)
5.88 5.816 (1%)

6.008
6.078

6.36 6.202 (2%)

before the RPA equations are solved. It would, however, oppose the purpose of this letter, which
is to demonstrate the performance of the method for a complex problem. In particular, specific
difficulties could have been expected from the high level of degeneracies in the spectrum. No
such difficulties have been noticed.

The symmetry analysis was performed for each state computed. Excitation energies were
found to be degenerate 1, 3, 4, or 5 times in accordance with the multiplicities of the irreducible
representations of the Ih symmetry group.

The choice of the initial vectors was observed to play no significant role in the convergence.
The results presented above were obtained using random starting vectors. The choice of the ini-
tial vector close to the solution was found to improve the convergence at several initial iterations.

For the sake of simplicity, this letter deals mainly with finite many-particle systems that
do not exhibit continuous symmetry breaking. In systems where continuous symmetry can
be broken, RPA equations can have zero-frequency spurious or Goldstone modes [31]. The
classical mechanics analogy developed above helps to see this point clearly: when the classical
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system is not at the minimum of the potential surface, motion in certain directions is unstable.
When the system possesses a continuous symmetry parameter, the minimum is not unique and
we have a zero-frequency mode. These situations require special treatment to project such
modes out [31], which is beyond the scope of this letter.

In conclusion, an analogy between the linear response equations of quantum many-body
systems and classical Hamiltonian equations of motion is revealed. It is shown that the
excitation frequencies, which are differences of energies, are given in turn by the minimum of an
effective classical energy functional. A numerical technique that follows from this observation
helps to solve RPA-type equations at a computational cost comparable to the HF solution for
the ground state. The method assists in computing low-energy excitonic states at the level of
theory which may be hard or impossible to achieve using conventional techniques.

As suggested in [17, 40], calculation of the electronic excitation energies at various
nuclear configurations effectively yields the excited-state adiabatic surface, provided that the
ground-state adiabatic surface is known. Thus, the ability to compute excitation energies at
a computational expense comparable to the ground-state calculation provides a long-sought
opportunity to perform molecular dynamics simulations of photochemical reactions, especially
those that occur in large biological molecules.

References

[1] Blaizot J-P and Ripka G 1986 Quantum Theory of Finite Systems (Cambridge, MA: MIT Press)
[2] Ring P and Schuck P 1980 The Nuclear Many-Body Problem (New York: Springer)
[3] Thouless D J 1961 Nucl. Phys. 22 78
[4] Tohyama M 1999 Nucl. Phys. A 657 343
[5] Amusia M Ya, Cherepkov N A, Chernysheva L V and Manson S T 2000 Phys. Rev. A 61 R20701
[6] Kim Y K, Johnson W R and Rudd M E 2000 Phys. Rev. A 61 34702
[7] Baker J D and Zerner M C 1990 Chem. Phys. Lett. 175 192
[8] Baker J D and Zerner M C 1991 J. Phys. Chem. 95 8614
[9] Mukamel S, Tretiak S, Wagersreiter T and Chernyak V 1997 Science 277 781

[10] Tretiak S, Chernyak V and Mukamel S 1997 J. Am. Chem. Soc. 119 11408
[11] Serra L, Navarro J, Barranco M and Giai N V 1991 Phys. Rev. Lett. 67 2311
[12] Dias E W B et al 1997 Phys. Rev. Lett. 78 4553
[13] Berkovits R and Altshuler B L 1997 Phys. Rev. B 55 5297
[14] Wang H L, Shah J, Damen T C, Pierson S W, Reinecke T L, Pfeiffer L N and West K 1995 Phys. Rev. B 52

17013
[15] Aryasetiawan F and Karlsson K 1994 Phys. Rev. Lett. 73 1679
[16] Gai F, Hasson K C, McDonald J C and Anfinrud P A 1998 Science 279 5358
[17] Tsiper E V, Tretiak S, Chernyak V and Mukamel S 1999 J. Chem. Phys. 110 8328
[18] Ullah N and Rowe D J 1971 Nucl. Phys. A 163 257
[19] Lanczos C 1950 J. Res. Nat. Bur. Standards 45 255
[20] Parlett B N 1980 The Symmetric Eigenvalue Problem (London: Prentice-Hall)
[21] Saad Y 1992 Numerical Methods for Large Eigenvalue Problems (Manchester: Manchester University Press)
[22] Rettrup S 1982 J. Comput. Phys. 45 100
[23] Olsen J, Jensen H J A and Jorgensen P 1988 J. Comput. Phys. 74 265
[24] Stratman R E, Scuseria G E and Frisch M J 1998 J. Chem. Phys. 109 8218
[25] Tretiak S, Chernyak V and Mukamel S 1997 J. Am. Chem. Soc. 119 11408
[26] Mei G 1986 A new method for solving the algebraic Riccati equation Master’s Thesis Nanjing Aeronautical

Inst., Campus PO Box 245, Nanjing, People’s Republic of China
[27] Benner P and Fassbender H 1997 Linear Algebr. Appl. 263 75
[28] Narita S and Shibuya T 1992 Can. J. Chem. 70 296
[29] Johnson C W, Bertsch G F and Hazelton W D 1999 Comput. Phys. Commun. 120 155
[30] Chernyak V, Schulz M F, Mukamel S, Tretiak S and Tsiper E V 2000 J. Chem. Phys. 113 36
[31] Chi B E 1970 Nucl. Phys. A 146 449
[32] Tsiper E V 1999 Pis’ma Zh. Eksp. Teor. Fiz. 70 740



Letter to the Editor L407

[33] Dresselhaus M S, Dresselhaus G and Eklund P C 1996 Science of Fullerenes & Carbon Nanotubes (San Diego:
Academic)

[34] Negri F, Orlandi G and Zerbetto F 1992 J. Chem. Phys. 97 6498
[35] Weiss H, Ahlrichs R and Haser M 1993 J. Chem. Phys. 99 1262
[36] Bauernschmitt R, Ahlrichs R, Hennrich F H and Kappes M M 1998 J. Am. Chem. Soc. 120 5052
[37] Zerner M C, Loew G H, Kirchner R F and Mueller-Westerhoff U T 1980 J. Am. Chem. Soc. 102 589
[38] Zerner M C ZINDO-95 Quantum Theory Project Gainesville, FL, University of Florida
[39] Koudoumas E, Ruth A, Couris S and Leach S 1996 Mol. Phys. 88 125
[40] Tsiper E V, Tretiak S, Chernyak V and Mukamel S 1999 Chem. Phys. Lett. 302 77


