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ABSTRACT

Quantum melting of a lattice Wigner crystal and the insulator-metal transition assosi-
ated with it are studied using numerical techniques. It is shown that the lowest in energy
excited state of the system plays crucial role in quantum melting. In a large enough
system this state is a point defect in a Wigner crystal. Based on numerical data a simple
picture of the transition is proposed. This picture leads to an empirical criterion that
allows estimation of the critical point of the transition in various cases. It is shown that
the picture provides a good description of the phase diagram of quantum melting in the
one-dimensional (1D) model with the nearest- and the next-nearest interactions in the
regions where the mixing of two competing crystals is not important. In the region of

strong mixing an interesting metallic phase of a strongly interacting system is found.
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CHAPTER 1

INTRODUCTION

The problem of the insulator-metal transition and the role of electron-electron inter-
action in this transition is a focus of modern condensed matter physics. It has been
shown[l, 2, 3] that in the systems with strong disorder the interaction is in favor of
delocalization because electrons may help each other to overcome the random potential.
In clean systems the role of the interaction is the opposite. It is well known that when the
interaction is strong enough, electrons behave classically and form a periodic structure
called Wigner crystal. In such structures each electron is localized in a potential well
created by all other electrons.

The Wigner crystal in continuum is not formally a dielectric, since it can move as a
whole and carry current. However, due to the presence of shear modulus it can be pinned
by small disorder. In contrast to the continuum case, the Wigner crystal on a lattice is
a dielectric without any disorder. It does not have any sound or plasma modes and its
excitation spectrum has a gap.

The Wigner crystal melts with increasing temperature. At zero temperature it be-
comes unstable (melts) when the average kinetic energy of the particles becomes larger
than characteristic interaction strength. We shall refer to a phase transition that occurs
at zero temperature as a result of variation of some parameter in Hamiltonian as quantum
phase transition.

Because of the dielectric nature of the Wigner crystal, its melting can be connected to
the insulator-metal transition. The ground-state energy of the continuum Wigner crystal
and its zero-temperature melting has been widely studied in the recent years both with
and without a magnetic field[4]. The insulator-metal transition that occurs due to the
melting of the lattice Wigner crystal is the subject of the present work.

The great majority of the efforts made recently to study correlated particles on a lattice
were restricted to the Hubbard model or £ — J model which are believed to be related

to high-T, superconductivity (see review [5]). These models exhibit metal-insulator



transitions, but no Wigner crystallization, since the long-range part of the interaction
is missing.

The goal of the present work is to study quantum melting of the Wigner crystal on
a two-dimensional (2D) square lattice and the insulator-metal transition associated with
it. Some 1D examples are also studied in Chapter IV. A system of spinless fermions is

considered with the following model Hamiltonian:

H:JZ(I,I_l_S(l,--I—% Z nenyV(r —1). (1.1)
r,s r#r

Here a, and al are the fermionic creation and annihilation operators, n, = aiar, and
the summation is performed over the lattice sites r, r' and over the vectors of translations
to the nearest-neighbor sites, s.

In 2D and 3D the Hamiltonian Eq. 1.1 with short range and long range interaction
has been mostly considered for bosons. The 3D Hamiltonian Eq. 1.1 for hard-core
bosons was first introduced to describe approximately some properties of He*, taking into
account the hardcore constraint[6]. An equivalent spin version of the bosonic Hamiltonian
with nearest-neighbor interaction has been studied extensively due to its importance
in magnetic problems. Much attention to the bosonic system has been paid recently
due to experiments on superconductor-insulator transition found in thin superconducting
films(7, 8, 9, 10]. In these systems supersolid and superfluid phases have been found.

The Hamiltonian Eq. 1.1 has been extensively studied in 1D. In this case the Hamil-
tonians for spinless fermions and for the hard-core bosons are equivalent. It is easy to see
that for an odd number of particles the Hamiltonians matrices are identical. For an even
number of particles the problem with antiperiodic boundary conditions is equivalent to
the bosonic problem with periodic conditions and vice versa.

The 1D problem with the nearest-neighbor interaction at half filling is exactly soluble[11,
12, 13]. This instructive problem shows that the transition is not of the first order and that
the insulator-metal transition appears at the same point as the structural transition[13].

Surprisingly, almost no works exist on the fermionic version of the Hamiltonian Eq. 1.1
in 2D and 3D. Pikus and Efros[14] have performed a computer modeling for 2D Hamilto-
nian Eq. 1.1 with Coulomb interaction on a square lattice at filling factors v = 1/3 and
1/6 in a cluster 6 x 6. They have suggested that the lifting of the ground-state degeneracy

with increasing J is a very good diagnostic of the structural phase transition.



In this work the Hamiltonian Eq. 1.1 with different types of interaction potential
is studied numerically. Based on comparison of the numerical data for long-range and
short-range interaction, we propose a simple picture of the transition. This picture leads
to an empirical criterion for estimation of the critical point.

The exact diagonalization technique is used to study finite clusters up to 16 electrons.
It has been preferred to the quantum Monte-Carlo technique because the latter is suitable
for calculating the properties of the ground state only. Also, the quantum Monte-Carlo
technique applied to fermi systems suffers from the so-called sign problem|5].

We detect the structural transition by studying the ground-state splitting as suggested
by Pikus and Efros[14]. Simultaneously the sensitivity of the spectrum to boundary
conditions is computed as a criterion of the insulator-metal transition[15, 16].

The thesis is organized as follows. In Chapter 2 the persistent current of a 2D system
of free fermions is studied. This is important since the amplitude of the persistent current
is used as a criterion of delocalization. It is shown that in 2D rectangular clusters at filling
factor v = 1/2, the persistent current amplitude is independent of the size of the cluster.
This statement is true only at ¥ = 1/2 and it is in contradiction to a naive notion that the
persistent current in a metallic phase is always mesoscopically small. Chapter 3 describes
the numerical technique and gives some general results. In Chapter 4 the results of 2D
computations are presented. A simple picture of the transition is formulated based on
the comparison of the numerical data for different types of interaction potential. An
empirical criterion is proposed, which allows estimation of the critical hopping amplitude
Je. In Chapter 5 we apply our empirical criterion to the 1D system with the Coulomb
interaction and with the nearest- and the next-nearest interactions and show that it works
very well even in a nontrivial situation. The criterion predicts existence of the metallic
phase at any strong interaction for the model with next-nearest interaction. This phase

is found and studied numerically.



CHAPTER 2

PERSISTENT CURRENT OF FREE
FERMIONS

2.1 Introduction

Persistent current (PC) in mesoscopic structures[15, 17] has been extensively studied
during the last decade both experimentally[18, 19, 20] and theoretically. The theoretical
investigations concentrated on the role of different degrees of disorder[21, 22] and on the
role of the interaction between electrons[23, 24].

The PC is the reaction of a system to an applied flux ®, or, equivalently, it can be
described as a change of the energy of the system due to twisted boundary conditions.
In a 2D system that forms a cylinder the twisted conditions mean that the wave function
of a system acquires a factor exp(i2n®/¢y) with a circulation of one electron around the
axis of the cylinder. Here ¢y = he/e is the flux quanta.

The flux @ is related to the tangential component A of the vector potential ® = 27 RA,
where R is the radius of the cylinder. For a system with Galilean invariance the following
simple statement is correct. The energy of a state with a given value of tangential

component P of the total momentum depends on A as

1 Ne \?
B(P,A) = By — 5 (P . TGA> : (2.1)

where N is the number of electrons and M = Nm is their total mass, m being the mass

of one electron. The 2D current density j for a state with fixed P is

c (OF ne? eP
¢ __ne e 2.2
P S <8A>p me + mS’ (2:2)

where S is the area of the cylinder surface and n = N/S. At P =0 Eq. (2.2) reminds the
London equation for a superconducting current. In this case n should be the superfluid
density.

A general derivation of Eq. (2.2), given above, is misleading because PC should be

defined as a current in the ground state rather than in a state with fixed P. In 2D or 3D



systems of free electrons the derivative of the energy with respect to A cannot be taken in
such a simple way because the intervals of ®, where branches of a spectrum with different
P change each other in the ground state, tend to zero with increasing system size.

For electrons in a periodic potential the situation is typically similar. The derivative
of energy with respect to the flux is large for a given branch. However, different branches
replace each other in the ground state at such small intervals of ® that the derivative
taken at a given total quasimomentum P does not reflect properties of the ground state.
Scalapino et al.[16] considered a tight binding model on a 2D square lattice. Their
computations show that at filling factor v = 1/4 the first level crossing occurs at & ~ 1/L,
where L is the size of the system. Their general conclusion is that the superfluid density,
as found from the relation between j and A, is zero for free electrons in the tight binding
model. We show in this paper that this is not always the case.

Namely, we consider a 2D system of free electrons on a square lattice in a tight
binding approximation at filling factor v = 1/2. The shape of the system is assumed to
be a rectangle with arbitrary aspect ratio. We demonstrate below that at 7" = 0 the 2D
PC density does not depend on the size of the system and has the form:

4 ne?

.7:*F

(A — Ay). (2.3)

mc

Here m = h?/2ta? is the electron mass, ¢ being the nearest-neighbor hopping energy. The
2D density is determined as n = 1/2a?, where a is the lattice constant. For simplicity, we
consider a system of spinless fermions. The generalization to the case of noninteracting
fermions with spin is straightforward.

The constant Ag shows that the minimum of energy occurs at nonzero flux. In contrast
to Eq. (2.2), Eq. (2.3) describes PC in the ground state of the system which is a periodic
function of ® with period ¢¢/q. Eq. (2.3) is valid within the interval 0 < ® < ¢q/q, or
0 < A < ¢y/2mRq, and is to be repeated periodically for other values of flux. Here ¢ is an
integer that depends on the aspect ratio of the cylinder and on the type of the boundary
conditions imposed in the direction of the cylinder axis. The first term is shown to be
independent on the aspect ratio.

We found PC to have an order of magnitude of the London current. Note that this
result gives substantially larger PC than is prescribed in the ballistic regime by the

so-called M-channel approximation (see Ref.[25] and references therein). Namely, our



exact solution gives PC larger by a factor of v/L for the L x L square. This discrepancy is
due to the fact that in the case of a flat Fermi surface all transverse channels are coherent.

Considering the 3D system constructed of a large number of coaxial closely packed 2D
cylinders we show that it mimics the Meissner effect and the quantization of flux trapped
in the opening.

These properties appear since the Fermi surface at v = 1/2 is flat and no branch
crossings occur in large intervals of ®. Say, for a square array no branch crossing occurs
in the whole interval 0 < ® < ¢y, which means that ¢ = 1.

In fact, we are discussing a mesoscopic effect. The expression Eq. (2.3) is valid only at
mesoscopically small temperatures, and the ideal diamagnetism occurs for mesoscopically

small values of magnetic field:

T < TCNRL‘ft, (2.4)
e

a t
H < H.~—\—, 2.5
-~ (2.5)

where b is the spacing between neighboring coaxial cylinders. The effective size R, is

given by

R.t =sD = q2rR = \/sq2mRD, (2.6)

where D is the length of the cylinders and s and ¢ are integers determined by the
aspect ratio 2rR/D (see below). Thus, this system can be classified as a “mesoscopic
superconductor.”

Note that the average distance between energy levels in a 2D system is proportional to
1/R%. The 1/R behavior in the above equations is also a result of the flat Fermi surface
at v = 1/2. As is seen from the calculations, all relevant interlevel distances are of the
order of (a/R)t, rather than (a/R)t.

Since both T, and H. vanish at large R, there are no real critical phenomena in this

model system.

2.2 Calculation of PC at zero temperature
Consider a rectangle of L, x L, lattice sites with periodic boundary conditions twisted

in both directions by 27®,/¢g and 27®,/po. This corresponds to a toroidal geometry



where @, is the flux through the crossection of the torus and ®, is the flux through the
opening.

The single-electron energies have the form

€(Ng, Ny, Py by) = —2J {cos [i—w(nw — ¢x)} + cos

T

2 (my - ¢y)] } 27)

Y

where we introduce dimensionless ¢, , = ®,,/po to simplify the notation. The values of
integer quantum numbers n, and n, are restricted to the rectangle |n, | < Ly, /2 (first
Brillouin zone). To find the energy of the ground state one has to sum €(ns, n,) over the
values {(rn4,n,)} inside the Fermi surface.

In principle, the calculation of PC can be performed either at a constant number of
particles N or at a constant value of chemical potential p. Generally speaking, these two
definitions are not equivalent. It is important to note that such a problem does not exist
at v = 1/2 at even numbers of L,, L, at least. As one can see from Eq. (2.7), every single-
electron energy changes sign under the transformation ng,,n, = ng, + L;/2,n, + L, /2.
It follows that at v = 1/2 due to the electron-hole symmetry the chemical potential u
is zero at any value of flux and at any temperature. Thus, if the flux changes at u = 0,
the number of particles in the ground state of the system does not change and if the flux
changes at a given number of particles such that v = 1/2, the chemical potential does
not change.

Let us define the Fermi “surface” (FS) in 2D n,,n, space by the equation

6(n$unya¢wa¢y) =0, (2.8)

considering n,,n, as continuous variables. It is easy to see that the FS forms a rhomb
at any value of flux. Change in the flux produces a shift of the FS as a whole without
changing its shape.

First, let us consider for simplicity a square sample, L, = L,. The FS forms a square
as shown in Fig. 2.1a. At ¢, , = 0 some of the allowed single-electron states lie exactly
at the sides of this square. All the states inside the square and 1/2 of the states at the
sides of the square are occupied. All the states at the sides have the same energy so the
occupation numbers of these states are not defined, whereas the many-electron ground
state is degenerate.

The degeneracy is lifted at infinitazimally small values of ¢. Suppose that ¢, = 0 and
¢, > 0. Then FS is shifted to the right (see Fig. 2.1a). All occupation numbers become



defined. Namely, the states at the right side of initial square get occupied and those at
the left side become empty. Note that the occupation numbers of as many as 2L states
change when ¢, crosses zero.

It is easy to see that the occupation numbers are constant throughout the interval
0 < ¢, < 1. The total energy decreases with ¢, and then increases again. At ¢, = 1 all
electrons jump one step to the right and the Fermi surface restores its original position
with respect to the lattice of integer numbers (n,,n,). The total energy thus returns to
the same value as at ¢, = 0.

It follows that the total quasimomentum of electron system in the ground state does
not change through all this interval and no branch crossing occurs. Then the sum over

the occupied states can be easily evaluated:

L/2-1  L]2-ny L/2
E(¢aza¢y) = Z Z [E(Tbazuny) +€(nxa_ny)] + Z €(ng,0)(2.9)
ny=1 ny=—L/24ny+1 ng=—IL/24+1

Figure 2.1. The Fermi surface at v = 1/2. The points represent allowed integer values of
ng and n, inside the first Brillouin zone. The dashed lines show the Fermi surface at zero
flux. The solid lines are the Fermi surface shifted by flux. The aspect ratio L,/L, =1
(a) and L, /L, =2/3 (b).



omi/ L.

This expression is exact in the region 0 < ¢, £ ¢, < 1. In the limit of large L, the
¢-dependent part of the energy, dE(¢z, ¢y) = E(ds, dy) — E(0,0), can be written in the

form:

SE($r, by) = 8 [67 — $u(1— )| . (2.10)

Repeating Eq. (2.10) periodically one gets the expression valid in the whole plane (¢, ¢, ):

1

SB($e, ) = 4 [({m} ) (1) - 5] , 2.11)

where ¢+ = ¢, + ¢,, and {...} denotes the fractional part of the number, defined as a
difference between the number and the largest integer less than it.
Fig. 2.2 shows the energy 0F(¢;. ¢,) as given by Eq. (2.11). The positions of energy

minima form a square lattice shifted from the origin:

(2.12)

(Gor) = (05

with arbitrary integer ¢ and j.

1+i+3 27)

The point ¢, = ¢, = 0 corresponds to a maximum of energy, in the same way as in

the 1D case with an even number of electrons. At this point the derivatives doF/d¢, ,

Figure 2.2. Lines of constant 0F(¢s,¢,) as given by Eq. (2.16) for square sample
s = q =1 (a), and for rectangle with s = 2 and ¢ = 3 (b). Note the difference in
periodicities.
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are discontinuous. Such behavior appears as the result of lifting the degeneracy of the
states at the Fermi surface.
The PC at T' = 0 can be found as the derivative of the total energy with respect to

flux:

OE c <8E 8E>

T = - = — — _— :l: _—
Y 8q)z Y ¢0 8¢+ 8¢7

s (101 —5) + (101 -3)] (2.13)

The magnitude of §E(¢z, ¢y) and I, (s, dy) as given by Eqgs. (2.11), (2.13) is inde-

pendent of the size L of the square. Such a large magnitude results from the fact that in
the region with no branch crossings (or, with no electron changing its state) all electrons
together contribute to the current.

It may seem that the aspect ratio L,/L, equal to 1 is crucial for the effect. In the
next section we calculate PC at finite temperature for arbitrary aspect ratio L, = sK,
L, = gK with mutually-prime integers s and q. We assume macroscopic limit K — oc.

It is useful to generalize ¢ for a rectangular sample as

P+ = G + 5Py (2.14)

In the limit 7" = 0 we find

f= g (90 3) (191 3)]

o= 2 f(w-3) - (101 3)]

The flux-dependent part of the energy can be restored from Eq. (2.15):

(2.15)

2 2
B(dar ) = o [({m} —5) *+(tr-3) - %] , (2.16)
This result is a generalization of Eq. (2.11) to an arbitrary aspect ratio s/q of the
rectangular sample.
As follows from Egs. (2.15), (2.16), the energy and current as functions of flux depend
on the aspect ratio. However, they do not depend on the system size, if the aspect ratio

is kept constant.
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The result given by Egs. (2.15) and (2.16) can be understood from Fig. 2.1b, which
is drawn for the case L,/L, = 2/3. Contrary to Fig. 2.1a, there are now points (n;,n,)
closer to the Fermi surface than one lattice spacing. However, there is still a regularity in
their positions. Namely, as the Fermi surface shifts with flux, the points enter the Fermi
sea in groups. Consider, for example, the same case as above: ¢, = 0 and ¢, > 0. As seen
in Fig. 2.1b, the branch crossings occur only at ¢, = 27/3, 47/3, and 27. In terms of ¢
this corresponds to integer ¢ = 3¢, = 1, 2, and 3. These values of flux are determined
by s and ¢ and do not change with the size of the system. The number of points in each
group, in turn, is proportional to the size of the system, so the corresponding contribution

to the current is large.

At &, =0 Eq. (2.15) gives

fe = _gqﬁs;q <{ ;;q} - %> ' (2.17)

Up to now we have been discussing the torus geometry. To come to a cylinder geometry

one has to formulate the boundary conditions in the direction of the cylinder axis, chosen
as y. In what follows we assume periodic boundary conditions in this direction with
®, = 0. This leads to Eq. (2.17) for a total current through the cylinder. As another
option we may impose the condition that the wave function is zero at the edges of the
cylinder. Tt can be shown that in this case the second term in Eq. (2.17) changes whereas
the first term remains intact.

Note that both energy and current are periodic functions of flux with period ¢¢/q
rather than ¢g.

Taking into account that the current density j, = I,/(aL,) and that the vector
potential A, = ®,/(aL,) one obtains Eq. (2.3) with the first term independent of s
and q.

2.3 PC at finite temperature
We start with the equation

KlKl
S q 1

Z Z 7 1 + exp(e(ng, ny)/T) (2.18)

nz[]ny[] I

It is convenient to rewrite the single electron energy in the form
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WK (n4 — ¢+)> cos (

5q

€(npmy) = —4t cos < S;K(n, - ¢>)) , (2.19)

where ny = gng £ sn, and ¢+ are given by Eq. (2.14). Using 9/0¢, = q(0/0¢+0/0¢_)

we find that the current has two terms,

1
L= (I +1), (2.20)
where
sK—1qK— 1 1

€(ng, ny)
= —Sq Z Z 0+ : 1+ exp(€(ng, ny)/T)

ng=0 ny=0

(2.21)

The idea of our calculation is to transform Eq. (2.21) in such a way that the internal
sum gives PC of 1D problem with effective temperature and effective flux. For this

purpose we use the identity:

sK—1qK—1 sK—19g—1K-—1
S fnany) = D> > > f(m+d+ sk,d+ qk). (2.22)
Nny=0 ny=0 m=0 d=0 k=0

This identity is valid for any function f(ns,n,) periodic in n, and n, with periods sK

and ¢K respectively. Then I, can be written in the form

 dnet KZIZ Kf sin (5 (ny — ¢4)) cos (2 (0 — )
 Kdo m=0 d=0 k=0 1 + exp { 7 cos (sq—K(”+ - ¢+)) cos (SZK(TL - ¢7))}
(2.23)
A similar expression can be written for 7 . Note that n_ = gm + (¢ — s)d does not

depend on k, while ny = (gm + qd+ sd) + 2sqk does depend on k. Therefore, the current

I, can be written as

sK—1q-1

L= )Y Y T.(m,d), (2.24)

m=0 d=0

where Z; (m, d) denote the internal sum over £k,

4dret 2T sin (Q_W(k - QZ+))

Zi(m,d) = K¢0 T =01+ exp [_Q—Ntcos (%(k_$+))j|

(2.25)

The sum in Eq. (2.25) describes the PC in 1D system with effective temperature and

effective flux given by
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~ T
T(m,d) =
2cos (g (am + (4= 5)d ~ §.))
(2.26)
~ ¢ —qm — qd — sd
bilm.d) = ———
sq
Using the Poisson summation formula (see Ref. [29]), one obtains
T & InK/2 ~
T, (m,d) = o™ osUnK/2) i omid,) (2.27)

¢o 1= sinh(inTK/2t)

Performing the summation over m and d in Eq. (2.24) we note that T is a smooth
function of m/K and d/K. However, sin(2rl¢, ) has an oscillatory behavior for some [,
so that the contribution of the corresponding harmonics vanishes in the limit K — oc.
The oscillatory behavior is absent if / is an integer multiple of 2sq. For these [, the sum
over m can be transformed into integral via p = (7/sK)m, while the sum over d simply

gives a factor q. Thus, one obtains

I =) Ajsin(2nle.), (2.28)
=1

where

™ dp
A= KT 2.29
L= do / sinh(IrsqKT /2t sinp) (2:29)
For the PC in z-direction one has from Eq. (2.20)
1 o0
= - Z [sin(27l¢4 ) + sin(2wlgp_)]. (2.30)
S —
Similar calculation gives
oo
ZAl sin(2wl¢y) — sin(2wlgp_)]. (2.31)

1=
Eqgs. (2.29) and (2.30) give the Fourier series expansion of PC at any temperature.
Expansion of A; at small KT/t yields

A —— (2.32)

In this case Eqgs. (2.30), (2.31), and (2.32) give the Fourier series expansion of the zero-
temperature result Eq. (2.15).
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In the opposite limit, KT/t > 1, the amplitudes of the harmonics decay as

8c IlmsqKT
Ay~ ——+/sqKTtex <7>, 2.33
z ¢g\/i\/ q p 57 (2.33)
so that PC is dominated by its lowest harmonic. When ®, = 0 one has
1 16¢ [ Ro Tt\'/? Re;T o
I~ ——o <L> exp (—” ef >sin< v ) (2.34)
sq¢o/q a 2at bo/

2.4 Low temperature magnetic properties

In this section we study magnetic properties of a quasi-3D system constructed of a
macroscopic number of closely packed coaxial cylinders assuming that the temperature
is very low. Then the connection between flux and current for each cylinder is given by
Eq. (2.17). For the sake of simplicity we assume that the cylinders are long, such that
the circumference of the internal cylinder 27 R = alL, is much larger than D = aL,. The
distance between the internal and external cylinders is supposed to be much less than
R. We assume further that all the cylinders have the same ratio L,/L, = s/q. One
can imagine a small change either in L, and L, of adjacent cylinders or in their lattice
constant.

The second term in Eq. (2.17) appears since zero flux does not correspond to the
minimum of energy. It may lead to an appearance of a spontaneous flux in this system.
This idea has been put forward by Wohlleben et al. and Szopa and Zipper, Ref. [26],
and then studied in details in Ref. [27]. These authors considered a cylinder constructed
from isolated 1D rings. Loss and Martin[28] argued that in a single 1D ring no symmetry
breaking can occur, but their arguments are restricted to the 1D case.

In this paper we concentrate on the first term in Eq. (2.17). It is an analog of the
London current in superconductors and it creates a strong diamagnetism in a quasi-3D
system described above. Suppose that an external magnetic field H.,; is applied to the
system and that there is a solenoid creating flux ®.,; inside the internal cylinder.

Let ®; be the total flux inside cylinder k, where £ = 1 for the internal cylinder and

k = N for the external one. The flux obeys the equation
4 &

®p — By = 27Rb | Hew + — PRICHIE (2.35)
=k

Here b is the distance between adjacent cylinders which we assume to be of the order of

the lattice constant a. Since the thickness d = Nb is supposed to be much less than R we
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have neglected the fact that the radii of cylinders are slightly different. The right hand
side of Eq. (2.35) describes the flux through the area between the k-th and (k — 1)-th
cylinders created by the external field and outer cylinders.

The following condition should be added to this finite difference equation:

4o Y
(1)1 - (I)e:rt = 7TR2 (He:rt + 5 ZI(@J) . (236)
=1

If ®; is a smooth function of k£ one can transform Eq. (2.35) into differential equation

=5 (o) .

Here A is the analog of the London penetration depth

_ Am 16t 16e’ng

AP —— = 2.38
b @2 mmc? ' (2.38)
where n3 = 1/2ba? is the 3D electron density.
Eq. (2.36) transforms into the boundary condition at r = R:
R do
(I)(R) — Qe = — — - (2.39)
2 dr r=R
The second boundary condition reads
dd
— = 2nRH . 2.40
dr Rt ™ ext ( )

One can use THE differential equation if A > b.

Eq. (2.37) can also be obtained by minimizing total energy with respect to flux. The
total energy consists of two parts. First is the energy of magnetic field in the space
between cylinders. The magnetic field can be expressed through d®/dr using Eq. (2.35)

as

0]
d— =27 RH(r). (2.41)
dr

The second part is the internal energy of 2D electron gas. This energy per cylinder is

given by Eq. (2.16) at ¢, = 0. Thus, one gets for the total energy

1 D dd\? dr
Eiotg) = — —— - E(®)—. 2.42
total 87r27rR/<dr> d7”+/5 ( )b ( )

Minimizing this expression with respect to ®(r) and taking into account that doE/d® =
(—1/c)I(®), where I(®) is given by Eq. (2.17), one obtains Eq. (2.37).
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The Eq. (2.37) is nonlinear since it contains the fractional part {®/(¢¢/q)} which
makes the right-hand side periodic. However, it becomes linear if the total drop of the
flux inside the system is smaller than ¢¢/q. If Hepy = 0 the solution of the linearized

equation with boundary conditions (2.39), (2.40) in the case R > d > X is

)\ _
O(r) = By + (Bt — @n)% exp (—T AR> . (2.43)
Here
_ o, 1
@, =~ (n 2) . (2.44)

One can see that the flux inside the cylinder with d > A may take only quantized
values @, with arbitrary integer n. Note that there is no zero flux among the allowed
values of the frozen flux ®,. This is because zero flux does not correspond to a minimum
of the total energy at zero temperature. The solution Eq. (2.43) is obtained in the linear
approximation and it is valid if (®ezy — ©,)20/R < ¢g/q. The physics of this result is
that the inner cylinders carry a current that creates a favorable flux for the rest of the
system.

If the system is in an external magnetic field Heyy, the solution is

R+d—
O(r) = @, + 2nRAH .y €Xp <—¥) . (2.45)
or in terms of magnetic field defined by Eq. (2.41)
R+d-
H(r) = Hop exp <%> (2.46)

In this case the cylinders near external surface carry current that screens magnetic field
inside the system and adjusts the total flux to ®,. The solution is valid if 2n RAH ., <
¢0/q. This condition is equivalent to Eq. (2.5). It has a simple interpretation. The loss in
the total energy due to the ideal Meissner effect is of the order of H2,,RDb per cylinder.
The gain in the energy of a cylinder due to the adjusted flux is of the order of t/sq (see
Eq. (2.16)). At large field the loss becomes larger than the gain and the field penetrates
into the system. This is the origin of a “mesoscopic” critical field. Note that the relation
H2RDb ~ t/sq is also equivalent to Eq. (2.5).

It follows from the results of the previous section that zero-temperature approximation

is good if sqKT/t = T'\/sq2rRD/at < 1. This is the same condition as Eq. (2.4). At
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larger temperatures the penetration depth A increases as exp(nT R, ¢ /4at) and eventually

reaches the thickness d of the cylinder, gradually destroying strong diamagnetism.

2.5 Conclusions

Finally we have presented a model that mimics in a mesoscopic scale some properties
of superconductors, such as Meissner effect and quantization of flux, though the physics
of the model does not involve any electron pairing. The flux quanta in the model is ¢q/q
where ¢ is determined by the aspect ratio of the system.

Since the range of temperature and magnetic field for these phenomena shrink to
zero in a macroscopic system, one should not expect any phase transitions. However,
for a mesoscopic system this range is not necessarily small. Let us assume a hypotetic
3D layered system with very weak interaction between layers and flat 2D Fermi surface.
Then it follows from Egs. (2.4), (2.5) that the temperature range is up to 12K and the
range of H..y is up to 240 gauss for a system with R,y = 3 x 10~°cm, @ = b = 3 x 10~ %cm,
and £ = 1eV. In a system with disorder the obvious condition for these phenomena is that
the elastic mean free path is smaller than the size R.j.

Our model ignores electron-electron interaction. We hope that it is not important at
large . Our modeling of small interacting systems up to 16 electrons shows the same
value of the PC at ¢ immediately above the Wigner crystal quantum melting point (see

Chapter 4).



CHAPTER 3

COMPUTATIONAL APPROACH AND
GENERAL REMARKS

In the 2D case we consider Hamiltonian Eq. 1.1 with Coulomb potential V(r) = 1/r
and strongly screened Coulomb potential V (r) = exp(—r/ry)/r. We study rectangular
clusters L, x L, with the periodic and twisted boundary conditions for the wave function.
The dimensionless vector potential ¢ = (¢,,¢,) can be introduced in the Hamiltonian
Eq. 1.1 by subsitution of a1+sar — (1,I+Sa,,r exp(i¢gs). This substitution is equivalent to
the twist of the boundary conditions by the flux ®; = L;¢;, i = z,y. The total spectrum
is periodic in @, and ®, with the period 27.

As a basis for computations we use many-electron wave functions at J = 0: ¥, =
Iy, a}\VAC >. The total size of the Hilbert space is C}}, where M = L, x L, is the
area of a system. It is effectively reduced about M times when the quasimomentum is

introduced as prescribed below.

3.1 Low-energy spectrum at J =0

The basic functions ¥, can be visualized in pictures, which we call icons. Some lowest
energy icons for v = 1/2 and cluster size 4 x 6 are shown in Fig. 3.1. The energy of
each icon has been calculated as a Madelung sum, assuming that the icons are repeated
periodically over the infinite plane with a compensating homogeneous background.

The icon with the lowest energy is a fragment of the crystal. In order to study quantum
melting it is necessary to have the size of the cluster commensurate with the primitive
vectors of the WC. In this case the periodic continuation does not destroy the crystalline
order.

As we show below, the icon which corresponds to the lowest excited state plays crucial
role in quantum melting. We denote the lowest excitation energy at J = 0 as A. It
appears to be a general statement, that in a large enough cluster A corresponds to the

energy of the lowest point defect in the WC (e.g., Fig. 3.1b). Indeed, the energy of
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Figure 3.1. Icons with lowest energies for (a) v = 1/2, Coulomb interaction, (b) v = 1/2,
short-range interaction, and (¢) v = 1/6 Coulomb interaction.

such defect remains finite in large clusters, whereas the energy of any extended defect,
like dislocation, increases linearly with the cluster size. Thus, at J = 0 the excitation
spectrum of the system has a gap equal to the energy necessary to create a single point
defect.

One can see from Fig. 1 that this is the case for short-range interaction, but not for the
Coulomb interaction. For the Coulomb interaction at v = 1/2 the point-defect appears
only as the fifth icon in the cluster 4 x 6. At v = 1/6 the icons shown in Fig. 3.1 do not
contain a point defect at all.

We have studied thoroughly the low-energy spectrum for Coulomb interaction at J =
0. We analyzed square clusters with different sizes L and filling factors 1/2, 1/3, 1/4,
and 1/6 using classical Monte-Carlo technique. The results are presented in Fig. 3.2. At
v =1/3 and 1/6 new low-energy types of dislocations appear with an increasing cluster
size. These dislocations are restricted by the periodic conditions in smaller clusters. As

a result, A decreases with size for small clusters. However, for large enough clusters new
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Figure 3.2. Size dependence of the lowest excitation energy at J = 0 for different filling
factors. The saturation occurs at such size when the point defect becomes the lowest
excitation.

dislocations do not appear so that A does not decrease. For v = 1/2 and 1/3 the point
defect becomes the lowest excited state starting with the square sizes 6 x 6 and 9 x 9
respectively. For v =1/4 and 1/6 we are unable to find this size. However, the increase
of A with L assures that the point defect should finally become the lowest excited state

starting with some large enough cluster.

3.2 Quasimomentum representation
The Hamiltonian Eq. 1.1 is translationally invariant. For each icon « there are my
different icons that can be obtained from it by various translations. These icons are

combined to get the wave function with total quasimomentum P:
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1

\I/ =
aP \/m—ﬂ

> exp(iPr)T, U, (3.1)

r
The summation is performed over m, translations 7.

An important point is that the icons with periodic structures generate a smaller
number of different functions ¥,p. The number of allowed P generated by each icon
is equal to m,. In particular, for the icon Wy of a WC with one electron per primitive

cell, one has my = 1/v. The allowed values of P can be determined from the conditions

(—1)9 exp(iPl;) = 1. (3.2)

Here 1; are the primitive vectors of the WC, and @; are the numbers of fermionic
transmutations necessary for translations on these vectors. These conditions can be
easily understood. If translation on a vector 1; is applied to Eq. (2), the right-hand side
acquires a factor (—1)9, whereas for a function with given P this factor must be equal
to exp(iPl;). If ); are even for both 1;, the allowed P form the reciprocal lattice of the
WC. However, in the case when one or both of (); are odd, the lattice is shifted by
in the corresponding directions. In such case P = 0 is forbidden. The complete set of
mq nontrivial values of P can be obtained by restricting P to the first Brillouin zone of
the background lattice. One WC is represented by a number of icons obtained from each
other by the point-group transformations of the background lattice. The total number of
allowed values of P for the WC is the property of the WC and does not depend on the
size and the shape of the cluster. On the contrary, an icon representing a point defect in

a WC generates all vectors P; their total number is M.

3.3 General remarks

The following results can be obtained directly using the perturbation theory with
respect to J: (i) the ground state and the lowest excited states have a common large
down shift that is proportional to J? and to the total number of particles N; (ii) the
ground state splitting appears in the N-th order and it is proportional to J; (iii) the
flux dependence of the ground state for the flux in z-direction appears in the L,-th order
and it is proportional to J"* in 2D case. In the 1D case the flux dependence appears in
the N-th order and it is also proportional to JV.

At small J there is a gap in the spectrum since a finite energy is required to create

a point defect in the WC. The states originating from the WC icon do not belong to
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the continuous spectrum since their number remains finite in a macroscopic system. The
states originating from an icon with point defect in WC form a band.

One can imagine two different scenario of the transition. The simplest one is the
first-order phase transition. It occurs if the branch originated from the point-defect icon
crosses the ground state at J = J.. This may happen because the energy of the bottom
of the point-defect band is going down with increasing J and can overcome the Coulomb
energy of the point defect existing at J = 0. The crossing is possible if the defect branch
has P different from all vectors of the WC. Since the point defect may have all P, the
excitation spectrum of the large system will become continuous at J > J.. Then the new
state should be a normal metal.

In the second scenario the ground state eigenvector originated from the WC icon
has an avoided crossing with defect states of the same P. The ground state obtains a
large admixture of the defect states, looses the structural long range order and becomes
delocalized in terms of the persistent current. No level crossing occurs in this scenario, so
the transition is not of the first-order transition. In all computational results that follow

we observed the second scenario.



CHAPTER 4

RESULTS OF 2D COMPUTATIONS

Fig. 4.1a,b show the result of diagonalization for cluster 4 x 6 with 12 electrons for the
long-range Coulomb interaction (a) and for the screened interaction (b) with r, = 0.25.
The last case can be considered as a short-range interaction. The total energy F is shown
as a function of J. The ground state energy is taken as a reference point for . Here
and below, the unit of energy is the Coulomb interaction energy for nearest neighbors.
At J = 0 the values of E coincide with the energies of the icons shown in Fig. 3.1. The
zero-J gap A in the Coulomb case is almost exactly 10 times larger than in the short

range case (see Fig. 3.1a,b).
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Figure 4.1. Low-energy part of the spectrum for the cluster 4 x 6 at v = 1/2 for (a)
Coulomb interaction and (b) short-range interaction. The numbers (n,,ny) denote the
components of quasimomentum P = (27n,/L,,27n,/L,). The ground-state energy is
taken as a reference point.
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At large J the energy E is linear in J. Thus, we can conclude that with increasing J
in this interval we go all the way from classical icons to free fermions. The ground state is
almost degenerate at small J and it splits into two states with increasing J. As we have
discussed above, this is a manifestation of the structural transition, which is the quantum
melting of the WC. The quasimomenta of these two states are those generated by the
WC icon, P = (0, 7) and (7,0). In Fig. 4.1a,b they are denoted as (0,3) and (2,0), where
(ng,ny) stands for quasimomentum with projections P, = 2mwn,/L,, P, = 2wn,/L,. The
other branches are the bands of defects.

Fig. 4.2a,b show flux sensitivity 0E = |E(n) — E(0)|, computed for the states with
lowest energy for both P = (0, 3) and (2,0), and the energy splitting between these states.
In accordance with perturbation theory (see Sec. 3.3), the flux sensitivity at small J obeys
the laws J* and J® for the direction of the vector potential along the short and long sides
of the cluster respectively. The splitting is roughly proportional to J'2. At large J the

flux sensitivity is linear in J and coincides with the free-fermion value. Note that for free
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Figure 4.2. Flux sensitivity for different directions of vector potential and the
ground-state splitting as a function of J for (a) Coulomb interaction and (b) short-range
interaction. The value J. = 0.02 is assumed. (b) A comparison of the results for different
cluster sizes. No significant size dependence of J, is observed.
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fermions at v = 1/2 the flux sensitivity JF is size independent for large clusters, while it
depends on the aspect ratio (see Chapter 3).

The data for E and splitting imply that the structural transition and insulator-metal
transition both occur between J = 0.2 and 0.3 for the Coulomb interaction, and between
0.02 and 0.03 for the short range interaction.

Comparison of Figs. 4.2a and 4.2b shows that the dependencies  E(.J) for the Coulomb
and the short-range potential are almost indistinguishable if all the energy scales for one
of them are adjusted 10 times. This factor is just the ratio of gaps A for these two cases.
Thus, we come to a conclusion that the transition point is determined by the value of A
and is almost independent of the type of interaction potential. The same applies to the
general structure of the low-energy spectrum of the system in the transition region as can
be seen from comparison of Figs. 4.1a and 4.1b.

Fig. 4.1 suggests the following mechanism of the transition. The width of the band
of the lowest point defect in the WC increases with J such that its lowest edge comes
close to the energy of the ground state[30]. Strong mixing between the crystalline and
defect states occurs at this point. This simple picture implies that critical value of J
is determined by the energy A of the lowest defect at J = 0. Now we can propose the

empirical rule for J,:

J. = BA (4.1)

where ( is some number. This number may depend on the type of the host lattice and
filling factor. However, in all cases we have studied it is between 0.4 and 0.8. Say, in the
case v = 1/2 we have 0.45 < 3 < 0.68.

Fig. 4.3a,b shows the data for » = 1/6 and Coulomb interaction. Fig. 4.3a looks more
complicated than Fig. 4.1a,b. The WC for this case is shown in the first icon in Fig. 3.1c.
There exist four such WC that can be obtained from each other by point-symmetry
operations. Each WC generates six different values of P. Thus, at small J the ground
state of the system is degenerate 24 times. Note that the multiplicity is large; however it
still remains finite in the infinitely large system, where it is always equal to 24.

The primitive vectors of the WC can not be obtained from each other by any symmetry
operation on the host lattice. This means that the WC phase belongs to a reducible rep-
resentation of the symmetry group of the host lattice. Following Landau and Lifshitz[31],

the symmetry reduction in the second-order phase transition should be such that the



26

0.09 10°
(b)
/
0.08 saaa P =(0,3), &= (0m) /
10t L / .
0.07 vvvv P=(03), &= (m0) / 2857
' soee P=(LD), b= (nen [ g I°
> A
0.06 102 F T e .
//,f// /AA ®$$v
0.05 T /S
~ 10° & 33 //A § 7 E
™ 0.04 w Ao 7
m “‘O /// & v
+ 0.03 10% F A v |
/ &
/ v
+ 0.02 Ay
10° | / 1
0.01 // v
© A’ #
103), G . 6 L R/ v 4
O By ) 10 $*/
0.01F S /"
107 L © / E
//
%
108 ! L
0.05 0.001 0.01 0.1
J J

Figure 4.3. Computational results of the cluster 6 x 6(a) the low-energy part of the
spectrum and (b) the flux sensitivity for different P and directions of flux for the cluster
6 x 6 at v = 1/6. The numbers (ny,ny) denote the components of quasimomentum
P = (2mny/Ly,2mny/L,). The reference point is taken to be A + BJ?, where A is
the energy of the WC at J = 0, and B = 177 is the exact J? term as obtained from
perturbation theory.

low-symmetry phase belongs to an irreducible representation of the symmetry group of
the high-symmetry phase. We conclude that the single second order phase transition
is forbidden in this case. However, it can occur as a series of the transitions, each
reducing the symmetry one step further. In fact, Fig. 4.3a suggests that there are several
transitions. We think that each splitting of the energy levels generated by the WC icon
manifests a structural transition. The cluster size 6 x 6 is too small to distinguish the
critical J for each of these transitions. We can only conclude that they all occur in the
region 0.02 < J < 0.03.

The metal insulator transition as seen in Fig. 4.3b also occurs in the same region of J.
Taking into account the value A = 0.037 for the cluster 6 x 6 we see that the parameter 3
in Eq. 4.1 is about 8 ~ 0.5 0.8. Note that for the pure Coulomb interaction the systems
with v = 1/2 and 1/6 differ in both A and J, by a factor of 10, whereas the ratio A/J,

is almost the same.

The proposed mechanism of the transition can be illustrated by the dependence E(P)
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at given J. Unfortunately, in 2D case the number of discreet values of P along any line in
the first Brillouin zone is small even for the largest 2D system we study. However, such
dependence is well pronounced in 1D. We discuss it in Sec. 4.1.

Now we study the size dependence of J. at v = 1/2. As mentioned in Sec. 3.1, in
the Coulomb case the gap A depends on the size of the cluster for small clusters. To
avoid this difficulty we consider only the short-range potential, where such dependence is
absent. To choose the size and a shape of the cluster we should keep in mind the condition
of commensurability of the WC, mentioned in Sec. 3.1. Since we can study clusters up
to 16 particles this condition restricts our options to clusters 4 x 4, 4 x 6, and 4 x 8 for
v=1/2.

The low-energy spectrum for the cluster 4 x 4 is shown in Fig. 4.3a. In this case
the WC icon generates quasimomenta P = (0,0) and (w, 7). The flux sensitivity and
the ground state splitting are shown in Fig. 4.3b. The transition point is again between
J = 0.02 and 0.03. The ground state splitting for 4 x 8 is shown also in Fig. 4.2b. It
is close to the splitting for 4 x 4 in the transition region. Thus, our data do not show
any pronounced systematical size dependence of the transition point for the short range
interaction at v = 1/2.

In the case of the long-range potential the gap A may be a strong function of size (see
Fig. 3.2) and one should expect a large size effect for relatively small clusters. The only
practical way we can propose to estimate the transition point for an infinite crystal is
to calculate the energy A of the point defect in such crystal and rely upon the criterion
Eq. 4.1. Say, for v = 1/2 we get A = 0.61 (see Fig. 3.2) resulting in J,. between 0.28
and 0.41 if we take 0.45 < B < 0.68. Note that to get this number from quantum
computations one should consider at least 6 x 6 cluster with 18 electrons because the
point defect becomes the lowest excited state starting from this cluster size (see Fig. 3.2).

Finally, we consider the gap between the split ground state and excited states that
belong to the defect band. This gap is clearly seen in Figs. 4.1a,b, 4.3a, and 4.4. At large
J the branches have a form of beams with different slopes. These slopes definitely come
from the confinement quantization. The large number of states in each beam reflects
high degenracy of the free-fermion ground state at ¥ = 1/2 in the square geometry. Say,
in Fig. 4.4 all lines that are horizontal at large J are the state that are degenerate in
the free fermion limit. The splitting of these states is the result of interaction. The gap

between the split ground state and the bunch of the states in the same beam can be
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Figure 4.4. The low-energy part of the spectrum for the clusters 4 x 4 and 4 x 8 at
v = 1/2. The ground-state energy is used as a reference point. The numbers (n;,n,)
denote the components of quasimomentum P = (27n,/L,,27n,/L,). The data for 4 x 8
cluster are presented only for P = (0,0) (dots) and P = (7, 1) (circles).

easily calculated in the mesoscopic region of large J, where 472 /L% > 1/L. The picture
of beams is valid in the mesoscopic limit and does not imply the existence of a gap at
large J in the macroscopic system.

On the other hand, the gap A that appears at J = 0 is the energy of point defect
and it has a nonzero limit in macroscopic system. Thus, an important question appears;
whether or not the gap has a nonzero limit right after the insulator-metal transition. The
nonzero gap would mean that the state after the transition is superconducting.

The gap in the transition region is a result of the avoided crossing of the ground
state and the defect branch with the same quasimomentum. We have made a lot of
computational efforts in this direction but the results are still inconclusive. Our best

achievement is shown in Fig. 4.4 where we compare the results for 4 x 4 and 4 x 8
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clusters. The confinement quantization would prescribe the doubling of the gap. We
have found that the gap for the 4 x 8 cluster is less than for 4 x 4 cluster but the ratio is
significantly less than 2.



CHAPTER 5

RESULTS OF 1D COMPUTATIONS

In this section we would like to check the above picture of the quantum melting in
1D case. The advantage of 1D case is that the size effect can be strongly reduced for the

same number of particles.

5.1 1D Coulomb problem

We study the Hamiltonian Eq. 1.1 at filling factor v = 1/2 and V(i — j) = 1/]i — j|.
In 1D we switch from the homogeneous background to the chain with +1/2 charges for
the empty and occupied sites respectively.

The 1D Coulomb WC at J = 0 has a structure eceo, where o stands for an occupied
and o stands for an empty site. The point defect with the lowest energy is a shift of one
electron to the nearest site. It is easy to show that its energy is A = 21n2 — 1=0.386.
Fig. 5.1 shows the flux sensitivity vs. J for different system sizes L. An extrapolation
to 1/L — oo shown in the inset gives a rather wide interval for J. between 0.17 and 0.3.
This gives for § in Eq. 4.1 the interval 0.44 < # < 0.77. The reason of such a large
uncertainity is discussed in the next subsection.

In 1D the picture of the transition can be illustrated by the dependence E(P) at given
J. Fig. 5.2 shows the few lowest eigenvalues for each quantized value of P for a system
of L = 28 sites with NV = 14 particles. Note that the spectrum has nontrivial symmetry
around the points P = +7/2. The states with total quasimomenta P, 7 — P, —P, and
P — 7 are degenerate. This is a general statement for 1D systems with the Hamiltonian
Eq. 1.1 for even N at v = 1/2. The states with quasimomenta P and m — P can be
obtained from each other by electron-hole transformation a}; — Qpyr-

For even N the WC icon generates two states with quasimomenta P = £m/2, which
are degenerate at all J. As one can see form Fig. 5.2, at J = 0.05 these states are
separated by a gap from the continuum of states, generated by the icon of the point

defect. At J = 0.1 the defect band becomes wider and the gap decreases as a result.
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However, the lowest eigenvalue at P = /2 is still a separated point, whereas the second
eigenvalue belongs to the defect band. At this point an avoided crossing starts to develop
and the width of the gap remains almost unchanged from J = 0.1 to J = 0.2. In the
later case, the lowest eigenvalue is no longer a separated point, but rather can be ascribed
to the band. At J = 0.3 it becomes absolutely clear that the lowest eigenvalue belongs
to the continuum spectrum. Finally, at J = 1 the picture is similar to that for free
fermions with the fermi momentum pr = 7/2 and with the lowest branch E,,;,(P) close
to J| cos(P)].

Thus, Fig. 5.2 provides a nice illustration to the mechanism of the quantum melting
described in Chapter 3. It shows that the band of the lowest defect plays crucial role in

this transition. We think that a similar picture is valid in the 2D case. We do not present
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Figure 5.1. The dependence of the total energy on quasimomenum at fixed J for 1D
system with Coulomb interaction at v = 1/2, size L = 28.
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interaction at v = 1/2 for different sizes L. The inset shows the extrapolation to 1/L — 0.

it because for the cluster size available the dependence E(P) does not look so impressive.

5.2 [V, V3]-problem
Here we apply the criterion Eq. 4.1 to the 1D problem with the nearest-neighbor
interaction V; and next-nearest neighbor interaction V5 at filling factor v = 1/2. This
model is interesting because the gap A can be varied in a large interval and can be close
to zero at finite V7 and V5.
This model has been studied[32] in connection with the spin version of the Hamiltonian

Eq. (1.1). The metal-insulating phase diagram for this model has been recently studied
in Ref. [33].
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Figure 5.3. The results for [V7, V5]-model. (a) The phase diagram. Solid lines show the
diagram as obtained from Eq. (4). Point a is known exactly; points b, ¢, and d are checked
by computations. The dashed line is the “magic” metallic line. The short-dashed lines
in the inset show schematically the boundaries of the normal metallic phase with LéFE
independent of L. (b) The flux sensitivity vs. J for different (V3,V3) for the system with
14 electrons. The arrows show the transition points predicted by the phase diagram.

In the [V7, V3]-model, at J = 0, there exist two competing crystals. The Crystal 1 has
a structure eoeo. The Crystal 2 is eeoco.

Dotted lines in Fig. 5.3a indicate three regions. Crystal 1 has lower energy in the
region I, where A = 2V, — V; < 0. The lowest-energy defect in it has energy —A and
represents a shift of an electron to the nearest site. Crystal 2 is stable in the regions II
and III, where A > 0. In the region II its lowest defect has energy A and is also a shift
of one electron. In the region III another defect wins, which has energy V. This defect
is a “domain boundary,” when a portion of a crystal is shifted one site to the right or to
the left. Such a shift, in fact, produces two domain boundaries simultaneously.

For the exactly soluble problem with nearest-neighbor interaction 8 = 0.5. Using this
value in Eq. (4.1) one can obtain phase boundaries shown in Fig. 5.3a with solid lines.
The lower solid line shows the quantum melting of Crystal 1. The upper solid line shows

the melting of Crystal 2. It consists of two straight lines in two different regions, 11 and
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ITI, which correspond to the melting due to the different types of defects.

Fig. 5.3b shows the results of numerical computation of LdE/J as a function of J at
fixed V7 and V5 for a system of 14 electrons. The data for smaller sizes are not shown.
However, they have been used to find the critical value .J. by extrapolation to 1/L — 0. At
(Vh, Va) equal to (1,0), (0,1), and (1,1) our criterion predicts the transition at J. = 0.5; at
(4,1) it predicts J. = 1. These values are indicated by the points a, b, ¢, and d in Fig. 5.3a,
and by arrows in Fig. 5.3b. The value J, = 0.5 is exact for the point (1,0)[11, 12, 13]. In
this case the result of extrapolation gives predicted values for the first three points with
a 15% accuracy.! For point (4,1) we have J. = 1.2 & 0.1. Thus, we may conclude that
Eq. (4.1) works very well in the region where A is of the order of V; and V5.

The most important statement suggested by the proposed phase diagram in Fig. 5.3a
is a prediction of metallic region between the solid lines which extends infinitely for
arbitrarily large Vi and V5 close to the line A = 2V, — V; = 0. Consider the curves in
Fig. 5.3b corresponding to (V7,V5) = (1,0.48) and (1,0.52). Now with decreasing J we
are moving almost along the line A = 0 in Fig. 5.3a. In the first case we deviate a little
towards the Crystal 1, and in the second case towards the Crystal 2. Both lines intersect
the corresponding phase boundaries at large Vi, V5, predicting J. = 0.02 in both cases.
One can see in Fig. 5.3b that this prediction is basically fulfilled in the sense that the
exponential dependence on J disappears at this point. For J > J. the system, however,
does not look like an ordinary metal, where LJFE should be size independent. In fact, we
have observed a weak dependence of LJFE on L in a wide range of J between J = J. and
J =~ 0.4.

Fig. 5.3b also shows 0E for (Vi, Va) = (1,0.50). Now with decreasing J we are moving
exactly along the line A = (0. In this case the exponential transition to the dielectric
phase is absent for arbitrarily small J and for the system size under study, as it follows
from our phase diagram Fig. 5.3a. However, there is some size dependence of LOE along
the line A = 0 in the region J < 1. It can be described as 6E ~ 1/L* with o > 1.
Thus, it is not a regular 1D metal where @ = 1. In fact, the numerical data can also be
consistent with the exponential size dependence '  exp(—L/&) with anomalously large

correlation length &.

"We claim such a high accuracy for the result of extrapolation because the size dependence looks very
similar to the case (Vi,V2)=(1,0), where exact J. is known. In the Coulomb case the extrapolation is
more uncertain.
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Now we study more carefully the close vicinity of the line A = 0 far from the origin. In
the region A < Vi, Vs the spectrum of energies at J = 0 has two scales. The large scale
is determined by V; and V5, whereas the second scale is |A|, that is the energy necessary
to produce a defect. When A = .J = 0 the ground state is macroscopically degenerate.

Below we consider a limit Vq,V, — oc, J and A being finite. In this limit the size
of the Hilbert space can be greatly reduced. Only the states which are degenerate at
A = J = 0 need to be taken into account. These states are such that neither three
electrons nor three holes occupy adjacent sites.

The reduction of the Hilbert space size is from C,%ﬂ to approximately fr_o, where f,
denote the Fibonacci numbers, defined by f, = fn-1+ fn_2, fo = f1 = 1. At large n one
has[34] fu & ((1+v/5)/2)"+1/ V5.

With this reduction we can increase L up to 40 (f3g = .63 x 10®). Fig. 5.4a shows
dEL/J as a function of A/2J obtained for different L. The maximum occurs not at
A =0, as can be expected from naive consideration, but at A/2J =~ —0.6. Accurate size
extrapolation shown in Fig. 5.4b demonstrates that at this point §EL/J stays finite as L
goes to infinity. Thus, the system at A ~ 1.2J is a normal metal. The flux sensitivity in
L — oo limit is less than the value 7 for free fermions and is equal LOE/J = 2.5. In the
phase diagram Fig. 5.3a the “magic” metallic line A = 1.2 is shown with a dashed line.
This line appears, obviously, as a result of quantum mixture of the two different Wigner
crystals.

Fig. 5.4a shows also the energy per particle as a function of A/2.J obtained in the same
limit. We have not found any singularity in the energy in the region of interest. The gap
between the ground and the lowest excited states with the same total quasimomentum at
the magic metallic line scales to zero linearly in 1/L, as shown in the inset in Fig. 5.4a.
Note that the WC on the lattice has a finite gap.

The inset in Fig. 5.4b shows the reciprocal correlation length 1/¢é = —dIn(LOE)/dL
as a function of A/2J as obtained from the slopes of the curves in Fig. 5.4b at largest
L. Note that the condition ¢ < L corresponds to 1/§ > 0.25. Thus, we have a real
exponential behavior for —3 < A/2J < 2. At large negative values of A/2.J the ground
state of the system is close to the Crystal 2 with a small admixture of defects which
are fragments of the Crystal 1. At large and positive A/2J one obtains the opposite
picture. In the intermediate region the ground state is a mixture of these two crystals.

If we extrapolate 1/ in each of the exponential regions, we find that it turns into zero
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Figure 5.4. Flux sensitivity LAFE/.J in the limit V4, V5, — oo vs. A/2.J and L as obtained
by exact diagonalization. (a) also shows the ground-state energy E per particle vs. A/2.J
for L = 40. The inset in (a) shows the excitation gap at the magic metallic line vs. 1/L.
The inset in (b) shows the slope 1/¢ = —dIn(LJE)/dL as obtained from the curves in (b)
at largest L. It can be regarded as the reciprocal correlation length when £ < L ~ 40.

approximately at the boundaries of the metallic strip shown in Fig. 9a. This is natural,
since the naive picture that leads to these phase boundaries considers quantum melting
of a single crystal.

The small value of ¢ in the intermediate region suggests that the size dependence of
L6 FE is not exponential near the magic line. This would imply the existence of another
phase, that may be named a “weak metal.” If such a phase exists, there should be a
phase boundary which separates the weak metal from the normal metal, where LOFE is
size independent. The inset in Fig. 9a shows schematically the boundaries of the normal
metal phase. This diagram is similar to the one obtained in Ref. [33], except it predicts

an infinite metallic line in the plane (V1, V).



CHAPTER 6

CONCLUSIONS

We have performed a numerical study of the quantum melting transition of 1D and
2D fermionic systems in a lattice model with Hamiltonian Eq. 1.1. The transition occurs
at some critical value of the hopping amplitude J. The structural transition has been
detected by studying the splitting of the ground state, degenerate in the crystalline phase.
Simultaneously we studied the insulator-metal transition, detecting it by computing the
sensitivity of the ground-state energy to the boundary conditions.

We have found out that the quantum melting transition on a lattice is not of the first
order. The driving force of the transition is the mixing of the ground-state wave function
with the wave function of the point defect in the Wigner crystal. At finite J the point
defect forms a band. The melting occurs at such J that the lowest edge of the band
comes close to the energy of the ground state. Strong mixing between the crystalline and
defect states occurs at this point. This simple picture implies that the critical value of J
is determined by the energy A of the point defect at J = 0. The empirical criterion we
have proposed is J. = A, where [ is some number.

In the 2D case we have studied the systems with Coulomb and short-range interaction
potentials at different filling factors. We have shown that the empirical criterion works
very well in all cases studied.

We have shown that the insulator-metal transition occurs simultaneously with the
structural transition

We have considered also a 1D lattice model with the nearest-neighbor interaction V;
and next-nearest neighbor interaction V5 at filling factor 1/2. This model is interesting
because the gap A can be varied in a large interval and can be close to zero at finite V;
and V5.

We have shown that our criterion provides a good description of the phase diagram of

quantum melting in the [V, V5]-model in the regions where the mixing of two competing
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crystals is not important. In the region of strong mixing we have found an interesting

metallic phase in a strongly interacting system.
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