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ABSTRACTQuantum melting of a lattice Wigner crystal and the insulator-metal transition assosi-ated with it are studied using numerical techniques. It is shown that the lowest in energyexcited state of the system plays crucial role in quantum melting. In a large enoughsystem this state is a point defect in a Wigner crystal. Based on numerical data a simplepicture of the transition is proposed. This picture leads to an empirical criterion thatallows estimation of the critical point of the transition in various cases. It is shown thatthe picture provides a good description of the phase diagram of quantum melting in theone-dimensional (1D) model with the nearest- and the next-nearest interactions in theregions where the mixing of two competing crystals is not important. In the region ofstrong mixing an interesting metallic phase of a strongly interacting system is found.
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CHAPTER 1INTRODUCTIONThe problem of the insulator-metal transition and the role of electron-electron inter-action in this transition is a focus of modern condensed matter physics. It has beenshown[1, 2, 3] that in the systems with strong disorder the interaction is in favor ofdelocalization because electrons may help each other to overcome the random potential.In clean systems the role of the interaction is the opposite. It is well known that when theinteraction is strong enough, electrons behave classically and form a periodic structurecalled Wigner crystal. In such structures each electron is localized in a potential wellcreated by all other electrons.The Wigner crystal in continuum is not formally a dielectric, since it can move as awhole and carry current. However, due to the presence of shear modulus it can be pinnedby small disorder. In contrast to the continuum case, the Wigner crystal on a lattice isa dielectric without any disorder. It does not have any sound or plasma modes and itsexcitation spectrum has a gap.The Wigner crystal melts with increasing temperature. At zero temperature it be-comes unstable (melts) when the average kinetic energy of the particles becomes largerthan characteristic interaction strength. We shall refer to a phase transition that occursat zero temperature as a result of variation of some parameter in Hamiltonian as quantumphase transition.Because of the dielectric nature of the Wigner crystal, its melting can be connected tothe insulator-metal transition. The ground-state energy of the continuum Wigner crystaland its zero-temperature melting has been widely studied in the recent years both withand without a magnetic �eld[4]. The insulator-metal transition that occurs due to themelting of the lattice Wigner crystal is the subject of the present work.The great majority of the e�orts made recently to study correlated particles on a latticewere restricted to the Hubbard model or t � J model which are believed to be relatedto high-Tc superconductivity (see review [5]). These models exhibit metal-insulator



2transitions, but no Wigner crystallization, since the long-range part of the interactionis missing.The goal of the present work is to study quantum melting of the Wigner crystal ona two-dimensional (2D) square lattice and the insulator-metal transition associated withit. Some 1D examples are also studied in Chapter IV. A system of spinless fermions isconsidered with the following model Hamiltonian:H = JXr;s ayr+sar + 12 Xr6=r0 nrnr0V (r� r0): (1.1)Here ar and ayr are the fermionic creation and annihilation operators, nr = ayrar, andthe summation is performed over the lattice sites r, r0 and over the vectors of translationsto the nearest-neighbor sites, s.In 2D and 3D the Hamiltonian Eq. 1.1 with short range and long range interactionhas been mostly considered for bosons. The 3D Hamiltonian Eq. 1.1 for hard-corebosons was �rst introduced to describe approximately some properties of He4, taking intoaccount the hardcore constraint[6]. An equivalent spin version of the bosonic Hamiltonianwith nearest-neighbor interaction has been studied extensively due to its importancein magnetic problems. Much attention to the bosonic system has been paid recentlydue to experiments on superconductor-insulator transition found in thin superconducting�lms[7, 8, 9, 10]. In these systems supersolid and super
uid phases have been found.The Hamiltonian Eq. 1.1 has been extensively studied in 1D. In this case the Hamil-tonians for spinless fermions and for the hard-core bosons are equivalent. It is easy to seethat for an odd number of particles the Hamiltonians matrices are identical. For an evennumber of particles the problem with antiperiodic boundary conditions is equivalent tothe bosonic problem with periodic conditions and vice versa.The 1D problem with the nearest-neighbor interaction at half �lling is exactly soluble[11,12, 13]. This instructive problem shows that the transition is not of the �rst order and thatthe insulator-metal transition appears at the same point as the structural transition[13].Surprisingly, almost no works exist on the fermionic version of the Hamiltonian Eq. 1.1in 2D and 3D. Pikus and Efros[14] have performed a computer modeling for 2D Hamilto-nian Eq. 1.1 with Coulomb interaction on a square lattice at �lling factors � = 1=3 and1=6 in a cluster 6�6. They have suggested that the lifting of the ground-state degeneracywith increasing J is a very good diagnostic of the structural phase transition.



3In this work the Hamiltonian Eq. 1.1 with di�erent types of interaction potentialis studied numerically. Based on comparison of the numerical data for long-range andshort-range interaction, we propose a simple picture of the transition. This picture leadsto an empirical criterion for estimation of the critical point.The exact diagonalization technique is used to study �nite clusters up to 16 electrons.It has been preferred to the quantum Monte-Carlo technique because the latter is suitablefor calculating the properties of the ground state only. Also, the quantum Monte-Carlotechnique applied to fermi systems su�ers from the so-called sign problem[5].We detect the structural transition by studying the ground-state splitting as suggestedby Pikus and Efros[14]. Simultaneously the sensitivity of the spectrum to boundaryconditions is computed as a criterion of the insulator-metal transition[15, 16].The thesis is organized as follows. In Chapter 2 the persistent current of a 2D systemof free fermions is studied. This is important since the amplitude of the persistent currentis used as a criterion of delocalization. It is shown that in 2D rectangular clusters at �llingfactor � = 1=2, the persistent current amplitude is independent of the size of the cluster.This statement is true only at � = 1=2 and it is in contradiction to a naive notion that thepersistent current in a metallic phase is always mesoscopically small. Chapter 3 describesthe numerical technique and gives some general results. In Chapter 4 the results of 2Dcomputations are presented. A simple picture of the transition is formulated based onthe comparison of the numerical data for di�erent types of interaction potential. Anempirical criterion is proposed, which allows estimation of the critical hopping amplitudeJc. In Chapter 5 we apply our empirical criterion to the 1D system with the Coulombinteraction and with the nearest- and the next-nearest interactions and show that it worksvery well even in a nontrivial situation. The criterion predicts existence of the metallicphase at any strong interaction for the model with next-nearest interaction. This phaseis found and studied numerically.



CHAPTER 2PERSISTENT CURRENT OF FREEFERMIONS2.1 IntroductionPersistent current (PC) in mesoscopic structures[15, 17] has been extensively studiedduring the last decade both experimentally[18, 19, 20] and theoretically. The theoreticalinvestigations concentrated on the role of di�erent degrees of disorder[21, 22] and on therole of the interaction between electrons[23, 24].The PC is the reaction of a system to an applied 
ux �, or, equivalently, it can bedescribed as a change of the energy of the system due to twisted boundary conditions.In a 2D system that forms a cylinder the twisted conditions mean that the wave functionof a system acquires a factor exp(i2��=�0) with a circulation of one electron around theaxis of the cylinder. Here �0 = hc=e is the 
ux quanta.The 
ux � is related to the tangential component A of the vector potential � = 2�RA,where R is the radius of the cylinder. For a system with Galilean invariance the followingsimple statement is correct. The energy of a state with a given value of tangentialcomponent P of the total momentum depends on A asE(P;A) = E0 � 12M �P � Nec A�2 ; (2.1)where N is the number of electrons and M = Nm is their total mass, m being the massof one electron. The 2D current density j for a state with �xed P isjP = � cS �@E@A�P = �ne2mcA+ ePmS ; (2.2)where S is the area of the cylinder surface and n = N=S. At P = 0 Eq. (2.2) reminds theLondon equation for a superconducting current. In this case n should be the super
uiddensity.A general derivation of Eq. (2.2), given above, is misleading because PC should bede�ned as a current in the ground state rather than in a state with �xed P . In 2D or 3D



5systems of free electrons the derivative of the energy with respect to A cannot be taken insuch a simple way because the intervals of �, where branches of a spectrum with di�erentP change each other in the ground state, tend to zero with increasing system size.For electrons in a periodic potential the situation is typically similar. The derivativeof energy with respect to the 
ux is large for a given branch. However, di�erent branchesreplace each other in the ground state at such small intervals of � that the derivativetaken at a given total quasimomentum P does not re
ect properties of the ground state.Scalapino et al.[16] considered a tight binding model on a 2D square lattice. Theircomputations show that at �lling factor � = 1=4 the �rst level crossing occurs at � � 1=L,where L is the size of the system. Their general conclusion is that the super
uid density,as found from the relation between j and A, is zero for free electrons in the tight bindingmodel. We show in this paper that this is not always the case.Namely, we consider a 2D system of free electrons on a square lattice in a tightbinding approximation at �lling factor � = 1=2. The shape of the system is assumed tobe a rectangle with arbitrary aspect ratio. We demonstrate below that at T = 0 the 2DPC density does not depend on the size of the system and has the form:j = � 4�2 ne2mc (A�A0): (2.3)Here m = ~2=2ta2 is the electron mass, t being the nearest-neighbor hopping energy. The2D density is determined as n = 1=2a2, where a is the lattice constant. For simplicity, weconsider a system of spinless fermions. The generalization to the case of noninteractingfermions with spin is straightforward.The constant A0 shows that the minimum of energy occurs at nonzero 
ux. In contrastto Eq. (2.2), Eq. (2.3) describes PC in the ground state of the system which is a periodicfunction of � with period �0=q. Eq. (2.3) is valid within the interval 0 < � < �0=q, or0 < A < �0=2�Rq, and is to be repeated periodically for other values of 
ux. Here q is aninteger that depends on the aspect ratio of the cylinder and on the type of the boundaryconditions imposed in the direction of the cylinder axis. The �rst term is shown to beindependent on the aspect ratio.We found PC to have an order of magnitude of the London current. Note that thisresult gives substantially larger PC than is prescribed in the ballistic regime by theso-called M -channel approximation (see Ref.[25] and references therein). Namely, our



6exact solution gives PC larger by a factor of pL for the L�L square. This discrepancy isdue to the fact that in the case of a 
at Fermi surface all transverse channels are coherent.Considering the 3D system constructed of a large number of coaxial closely packed 2Dcylinders we show that it mimics the Meissner e�ect and the quantization of 
ux trappedin the opening.These properties appear since the Fermi surface at � = 1=2 is 
at and no branchcrossings occur in large intervals of �. Say, for a square array no branch crossing occursin the whole interval 0 < � < �0, which means that q = 1.In fact, we are discussing a mesoscopic e�ect. The expression Eq. (2.3) is valid only atmesoscopically small temperatures, and the ideal diamagnetism occurs for mesoscopicallysmall values of magnetic �eld: T < Tc � aRef t; (2.4)H < Hc � aRefr ta2b ; (2.5)where b is the spacing between neighboring coaxial cylinders. The e�ective size Ref isgiven by Ref = sD = q2�R = psq2�RD; (2.6)where D is the length of the cylinders and s and q are integers determined by theaspect ratio 2�R=D (see below). Thus, this system can be classi�ed as a \mesoscopicsuperconductor."Note that the average distance between energy levels in a 2D system is proportional to1=R2. The 1=R behavior in the above equations is also a result of the 
at Fermi surfaceat � = 1=2. As is seen from the calculations, all relevant interlevel distances are of theorder of (a=R)t, rather than (a=R)2t.Since both Tc and Hc vanish at large R, there are no real critical phenomena in thismodel system.2.2 Calculation of PC at zero temperatureConsider a rectangle of Lx�Ly lattice sites with periodic boundary conditions twistedin both directions by 2��x=�0 and 2��y=�0. This corresponds to a toroidal geometry



7where �x is the 
ux through the crossection of the torus and �y is the 
ux through theopening.The single-electron energies have the form�(nx; ny; �x; �y) = �2J (cos �2�Lx (nx � �x)�+ cos "2�Ly (ny � �y)#) ; (2.7)where we introduce dimensionless �x;y = �x;y=�0 to simplify the notation. The values ofinteger quantum numbers nx and ny are restricted to the rectangle jnx;yj � Lx;y=2 (�rstBrillouin zone). To �nd the energy of the ground state one has to sum �(nx; ny) over thevalues f(nx; ny)g inside the Fermi surface.In principle, the calculation of PC can be performed either at a constant number ofparticles N or at a constant value of chemical potential �. Generally speaking, these twode�nitions are not equivalent. It is important to note that such a problem does not existat � = 1=2 at even numbers of Lx; Ly at least. As one can see from Eq. (2.7), every single-electron energy changes sign under the transformation nx; ny ! nx + Lx=2; ny + Ly=2.It follows that at � = 1=2 due to the electron-hole symmetry the chemical potential �is zero at any value of 
ux and at any temperature. Thus, if the 
ux changes at � = 0,the number of particles in the ground state of the system does not change and if the 
uxchanges at a given number of particles such that � = 1=2, the chemical potential doesnot change.Let us de�ne the Fermi \surface" (FS) in 2D nx; ny space by the equation�(nx; ny; �x; �y) = 0; (2.8)considering nx; ny as continuous variables. It is easy to see that the FS forms a rhombat any value of 
ux. Change in the 
ux produces a shift of the FS as a whole withoutchanging its shape.First, let us consider for simplicity a square sample, Lx = Ly. The FS forms a squareas shown in Fig. 2.1a. At �x;y = 0 some of the allowed single-electron states lie exactlyat the sides of this square. All the states inside the square and 1/2 of the states at thesides of the square are occupied. All the states at the sides have the same energy so theoccupation numbers of these states are not de�ned, whereas the many-electron groundstate is degenerate.The degeneracy is lifted at in�nitazimally small values of �. Suppose that �y = 0 and�x > 0. Then FS is shifted to the right (see Fig. 2.1a). All occupation numbers become



8de�ned. Namely, the states at the right side of initial square get occupied and those atthe left side become empty. Note that the occupation numbers of as many as 2L stateschange when �x crosses zero.It is easy to see that the occupation numbers are constant throughout the interval0 < �x < 1. The total energy decreases with �x and then increases again. At �x = 1 allelectrons jump one step to the right and the Fermi surface restores its original positionwith respect to the lattice of integer numbers (nx; ny). The total energy thus returns tothe same value as at �x = 0.It follows that the total quasimomentum of electron system in the ground state doesnot change through all this interval and no branch crossing occurs. Then the sum overthe occupied states can be easily evaluated:E(�x; �y) = L=2�1Xny=1 L=2�nyXnx=�L=2+ny+1 [�(nx; ny) + �(nx;�ny)] + L=2Xnx=�L=2+1 �(nx; 0)(2.9)
(a) (b)

Figure 2.1. The Fermi surface at � = 1=2. The points represent allowed integer values ofnx and ny inside the �rst Brillouin zone. The dashed lines show the Fermi surface at zero
ux. The solid lines are the Fermi surface shifted by 
ux. The aspect ratio Lx=Ly = 1(a) and Lx=Ly = 2=3 (b).



9= 8t Re e2�i=L(e2�i=L � 1)2 h�1 + e2�i=L� e�i2��x=L + 2e�i2��y=LiThis expression is exact in the region 0 < �x � �y < 1. In the limit of large L, the�-dependent part of the energy, �E(�x; �y) = E(�x; �y) �E(0; 0), can be written in theform: �E(�x; �y) = 8t h�2y � �x(1� �x)i : (2.10)Repeating Eq. (2.10) periodically one gets the expression valid in the whole plane (�x; �y):�E(�x; �y) = 4t "�f�+g � 12�2 + �f��g � 12�2 � 12# ; (2.11)where �� = �x � �y, and f:::g denotes the fractional part of the number, de�ned as adi�erence between the number and the largest integer less than it.Fig. 2.2 shows the energy �E(�x; �y) as given by Eq. (2.11). The positions of energyminima form a square lattice shifted from the origin:(�x; �y) = �1 + i+ j2 ; i� j2 � ; (2.12)with arbitrary integer i and j.The point �x = �y = 0 corresponds to a maximum of energy, in the same way as inthe 1D case with an even number of electrons. At this point the derivatives d�E=d�x;y
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10are discontinuous. Such behavior appears as the result of lifting the degeneracy of thestates at the Fermi surface.The PC at T = 0 can be found as the derivative of the total energy with respect to
ux: Ix;y = �c @E@�x;y = � c�0 � @E@�+ � @E@���= �8 ct�0 ��f�+g � 12�� �f��g � 12�� (2.13)The magnitude of �E(�x; �y) and Ix;y(�x; �y) as given by Eqs. (2.11), (2.13) is inde-pendent of the size L of the square. Such a large magnitude results from the fact that inthe region with no branch crossings (or, with no electron changing its state) all electronstogether contribute to the current.It may seem that the aspect ratio Lx=Ly equal to 1 is crucial for the e�ect. In thenext section we calculate PC at �nite temperature for arbitrary aspect ratio Lx = sK,Ly = qK with mutually-prime integers s and q. We assume macroscopic limit K ! 1.It is useful to generalize �� for a rectangular sample as�� = q�x � s�y: (2.14)In the limit T = 0 we �ndIx = � 8sq ct�0=q ��f�+g � 12�+ �f��g � 12�� (2.15)Iy = � 8sq ct�0=s ��f�+g � 12�� �f��g � 12��The 
ux-dependent part of the energy can be restored from Eq. (2.15):�E(�x; �y) = 4tsq "�f�+g � 12�2 + �f��g � 12�2 � 12# ; (2.16)This result is a generalization of Eq. (2.11) to an arbitrary aspect ratio s=q of therectangular sample.As follows from Eqs. (2.15), (2.16), the energy and current as functions of 
ux dependon the aspect ratio. However, they do not depend on the system size, if the aspect ratiois kept constant.



11The result given by Eqs. (2.15) and (2.16) can be understood from Fig. 2.1b, whichis drawn for the case Lx=Ly = 2=3. Contrary to Fig. 2.1a, there are now points (nx; ny)closer to the Fermi surface than one lattice spacing. However, there is still a regularity intheir positions. Namely, as the Fermi surface shifts with 
ux, the points enter the Fermisea in groups. Consider, for example, the same case as above: �y = 0 and �x > 0. As seenin Fig. 2.1b, the branch crossings occur only at �x = 2�=3, 4�=3, and 2�. In terms of ��this corresponds to integer �� = 3�x = 1, 2, and 3. These values of 
ux are determinedby s and q and do not change with the size of the system. The number of points in eachgroup, in turn, is proportional to the size of the system, so the corresponding contributionto the current is large.At �y = 0 Eq. (2.15) givesIx = �16sq ct�0=q �� �x�0=q�� 12� : (2.17)Up to now we have been discussing the torus geometry. To come to a cylinder geometryone has to formulate the boundary conditions in the direction of the cylinder axis, chosenas y. In what follows we assume periodic boundary conditions in this direction with�y = 0. This leads to Eq. (2.17) for a total current through the cylinder. As anotheroption we may impose the condition that the wave function is zero at the edges of thecylinder. It can be shown that in this case the second term in Eq. (2.17) changes whereasthe �rst term remains intact.Note that both energy and current are periodic functions of 
ux with period �0=qrather than �0.Taking into account that the current density jx = Ix=(aLy) and that the vectorpotential Ax = �x=(aLx) one obtains Eq. (2.3) with the �rst term independent of sand q. 2.3 PC at �nite temperatureWe start with the equationIx = � c�0 sK�1Xnx=0 qK�1Xny=0 @�(nx; ny)@�x 11 + exp(�(nx; ny)=T ) : (2.18)It is convenient to rewrite the single electron energy in the form



12�(nx; ny) = �4t cos� �sqK (n+ � �+)� cos� �sqK (n� � ��)� ; (2.19)where n� = qnx�sny and �� are given by Eq. (2.14). Using @=@�x = q(@=@�++@=@��)we �nd that the current has two terms,Ix = 1s (I+ + I�); (2.20)where I� = �sq c�0 sK�1Xnx=0 qK�1Xny=0 @�(nx; ny)@�� 11 + exp(�(nx; ny)=T ) (2.21)The idea of our calculation is to transform Eq. (2.21) in such a way that the internalsum gives PC of 1D problem with e�ective temperature and e�ective 
ux. For thispurpose we use the identity:sK�1Xnx=0 qK�1Xny=0 f(nx; ny) = sK�1Xm=0 q�1Xd=0K�1Xk=0 f(m+ d+ sk; d+ qk): (2.22)This identity is valid for any function f(nx; ny) periodic in nx and ny with periods sKand qK respectively. Then I+ can be written in the formI+ = �4�ctK�0 sK�1Xm=0 q�1Xd=0K�1Xk=0 sin� �sqK (n+ � �+)� cos � �sqK (n� � ��)�1 + exp h�4tT cos � �sqK (n+ � �+)� cos � �sqK (n� � ��)�i :(2.23)A similar expression can be written for I�. Note that n� = qm + (q � s)d does notdepend on k, while n+ = (qm+ qd+ sd)+2sqk does depend on k. Therefore, the currentI+ can be written as I+ = sK�1Xm=0 q�1Xd=0 I+(m; d); (2.24)where I+(m; d) denote the internal sum over k,I+(m; d) = �4�ctK�0 2TeT K�1Xk=0 sin�2�K (k � e�+)�1 + exp h�2teT cos �2�K (k � e�+)�i : (2.25)The sum in Eq. (2.25) describes the PC in 1D system with e�ective temperature ande�ective 
ux given by



13eT (m; d) = T2 cos � �sqK (qm+ (q � s)d� ��)� (2.26)e�+(m; d) = �+ � qm� qd� sd2sqUsing the Poisson summation formula (see Ref. [29]), one obtainsI+(m; d) = 8�cT�0 1Xl=1 cos(l�K=2)sinh(l� eTK=2t) sin(2�le�+) (2.27)Performing the summation over m and d in Eq. (2.24) we note that eT is a smoothfunction of m=K and d=K. However, sin(2�le�+) has an oscillatory behavior for some l,so that the contribution of the corresponding harmonics vanishes in the limit K ! 1.The oscillatory behavior is absent if l is an integer multiple of 2sq. For these l, the sumover m can be transformed into integral via p = (�=sK)m, while the sum over d simplygives a factor q. Thus, one obtainsI� = 1Xl=1Al sin(2�l��); (2.28)where Al = sqKT 2c�0 Z �0 dpsinh(l�sqKT=2t sin p) (2.29)For the PC in x-direction one has from Eq. (2.20)Ix = 1s 1Xl=1Al [sin(2�l�+) + sin(2�l��)] : (2.30)Similar calculation givesIy = 1q 1Xl=1Al [sin(2�l�+)� sin(2�l��)] : (2.31)Eqs. (2.29) and (2.30) give the Fourier series expansion of PC at any temperature.Expansion of Al at small KT=t yields Al � 8t�0 1l� (2.32)In this case Eqs. (2.30), (2.31), and (2.32) give the Fourier series expansion of the zero-temperature result Eq. (2.15).



14In the opposite limit, KT=t� 1, the amplitudes of the harmonics decay asAl � 8c�0plpsqKTt exp�� l�sqKT2t � ; (2.33)so that PC is dominated by its lowest harmonic. When �y = 0 one hasIx � 1sq 16c�0=q �RefT ta �1=2 exp���RefT2at � sin� �x�0=q� : (2.34)2.4 Low temperature magnetic propertiesIn this section we study magnetic properties of a quasi-3D system constructed of amacroscopic number of closely packed coaxial cylinders assuming that the temperatureis very low. Then the connection between 
ux and current for each cylinder is given byEq. (2.17). For the sake of simplicity we assume that the cylinders are long, such thatthe circumference of the internal cylinder 2�R = aLx is much larger than D = aLy. Thedistance between the internal and external cylinders is supposed to be much less thanR. We assume further that all the cylinders have the same ratio Lx=Ly = s=q. Onecan imagine a small change either in Lx and Ly of adjacent cylinders or in their latticeconstant.The second term in Eq. (2.17) appears since zero 
ux does not correspond to theminimum of energy. It may lead to an appearance of a spontaneous 
ux in this system.This idea has been put forward by Wohlleben et al. and Szopa and Zipper, Ref. [26],and then studied in details in Ref. [27]. These authors considered a cylinder constructedfrom isolated 1D rings. Loss and Martin[28] argued that in a single 1D ring no symmetrybreaking can occur, but their arguments are restricted to the 1D case.In this paper we concentrate on the �rst term in Eq. (2.17). It is an analog of theLondon current in superconductors and it creates a strong diamagnetism in a quasi-3Dsystem described above. Suppose that an external magnetic �eld Hext is applied to thesystem and that there is a solenoid creating 
ux �ext inside the internal cylinder.Let �k be the total 
ux inside cylinder k, where k = 1 for the internal cylinder andk = N for the external one. The 
ux obeys the equation�k � �k�1 = 2�Rb Hext + 4�cD NXi=k I(�i)! : (2.35)Here b is the distance between adjacent cylinders which we assume to be of the order ofthe lattice constant a. Since the thickness d = Nb is supposed to be much less than R we



15have neglected the fact that the radii of cylinders are slightly di�erent. The right handside of Eq. (2.35) describes the 
ux through the area between the k-th and (k � 1)-thcylinders created by the external �eld and outer cylinders.The following condition should be added to this �nite di�erence equation:�1 � �ext = �R2  Hext + 4�cD NXi=1 I(�i)! : (2.36)If �k is a smooth function of k one can transform Eq. (2.35) into di�erential equationd2�dr2 = �0=q�2 �� ��0=q�� 12� : (2.37)Here � is the analog of the London penetration depth��2 = 4�b 16t�20 = 16e2n3�mc2 ; (2.38)where n3 = 1=2ba2 is the 3D electron density.Eq. (2.36) transforms into the boundary condition at r = R:�(R)� �ext = R2 d�dr ����r=R : (2.39)The second boundary condition readsd�dr ����r=R+d = 2�RHext: (2.40)One can use THE di�erential equation if �� b.Eq. (2.37) can also be obtained by minimizing total energy with respect to 
ux. Thetotal energy consists of two parts. First is the energy of magnetic �eld in the spacebetween cylinders. The magnetic �eld can be expressed through d�=dr using Eq. (2.35)as d�dr = 2�RH(r): (2.41)The second part is the internal energy of 2D electron gas. This energy per cylinder isgiven by Eq. (2.16) at �y = 0. Thus, one gets for the total energyEtotal = 18� D2�R Z �d�dr �2 dr + Z �E(�)drb : (2.42)Minimizing this expression with respect to �(r) and taking into account that d�E=d� =(�1=c)I(�), where I(�) is given by Eq. (2.17), one obtains Eq. (2.37).



16The Eq. (2.37) is nonlinear since it contains the fractional part f�=(�0=q)g whichmakes the right-hand side periodic. However, it becomes linear if the total drop of the
ux inside the system is smaller than �0=q. If Hext = 0 the solution of the linearizedequation with boundary conditions (2.39), (2.40) in the case R� d� � is�(r) = �n + (�ext � �n)2�R exp��r �R� � : (2.43)Here �n = �0q �n� 12� : (2.44)One can see that the 
ux inside the cylinder with d � � may take only quantizedvalues �n with arbitrary integer n. Note that there is no zero 
ux among the allowedvalues of the frozen 
ux �n. This is because zero 
ux does not correspond to a minimumof the total energy at zero temperature. The solution Eq. (2.43) is obtained in the linearapproximation and it is valid if (�ext � �n)2�=R < �0=q. The physics of this result isthat the inner cylinders carry a current that creates a favorable 
ux for the rest of thesystem.If the system is in an external magnetic �eld Hext, the solution is�(r) = �n + 2�R�Hext exp��R+ d� r� � : (2.45)or in terms of magnetic �eld de�ned by Eq. (2.41)H(r) = Hext exp��R+ d� r� � (2.46)In this case the cylinders near external surface carry current that screens magnetic �eldinside the system and adjusts the total 
ux to �n. The solution is valid if 2�R�Hext <�0=q. This condition is equivalent to Eq. (2.5). It has a simple interpretation. The loss inthe total energy due to the ideal Meissner e�ect is of the order of H2extRDb per cylinder.The gain in the energy of a cylinder due to the adjusted 
ux is of the order of t=sq (seeEq. (2.16)). At large �eld the loss becomes larger than the gain and the �eld penetratesinto the system. This is the origin of a \mesoscopic" critical �eld. Note that the relationH2cRDb � t=sq is also equivalent to Eq. (2.5).It follows from the results of the previous section that zero-temperature approximationis good if sqKT=t = Tpsq2�RD=at � 1. This is the same condition as Eq. (2.4). At



17larger temperatures the penetration depth � increases as exp(�TRef=4at) and eventuallyreaches the thickness d of the cylinder, gradually destroying strong diamagnetism.2.5 ConclusionsFinally we have presented a model that mimics in a mesoscopic scale some propertiesof superconductors, such as Meissner e�ect and quantization of 
ux, though the physicsof the model does not involve any electron pairing. The 
ux quanta in the model is �0=qwhere q is determined by the aspect ratio of the system.Since the range of temperature and magnetic �eld for these phenomena shrink tozero in a macroscopic system, one should not expect any phase transitions. However,for a mesoscopic system this range is not necessarily small. Let us assume a hypotetic3D layered system with very weak interaction between layers and 
at 2D Fermi surface.Then it follows from Eqs. (2.4), (2.5) that the temperature range is up to 12K and therange of Hext is up to 240 gauss for a system with Ref = 3�10�5cm, a = b = 3�10�8cm,and t = 1eV. In a system with disorder the obvious condition for these phenomena is thatthe elastic mean free path is smaller than the size Ref .Our model ignores electron-electron interaction. We hope that it is not important atlarge t. Our modeling of small interacting systems up to 16 electrons shows the samevalue of the PC at t immediately above the Wigner crystal quantum melting point (seeChapter 4).



CHAPTER 3COMPUTATIONAL APPROACH ANDGENERAL REMARKSIn the 2D case we consider Hamiltonian Eq. 1.1 with Coulomb potential V (r) = 1=rand strongly screened Coulomb potential V (r) = exp(�r=rs)=r. We study rectangularclusters Lx�Ly with the periodic and twisted boundary conditions for the wave function.The dimensionless vector potential � = (�x; �y) can be introduced in the HamiltonianEq. 1.1 by subsitution of ayr+sar ! ayr+sar exp(i�s). This substitution is equivalent tothe twist of the boundary conditions by the 
ux �i = Li�i, i = x; y. The total spectrumis periodic in �x and �y with the period 2�.As a basis for computations we use many-electron wave functions at J = 0: 	� =QNi=1 ayi jVAC >. The total size of the Hilbert space is CNM , where M = Lx � Ly is thearea of a system. It is e�ectively reduced about M times when the quasimomentum isintroduced as prescribed below.3.1 Low-energy spectrum at J = 0The basic functions 	� can be visualized in pictures, which we call icons. Some lowestenergy icons for � = 1=2 and cluster size 4 � 6 are shown in Fig. 3.1. The energy ofeach icon has been calculated as a Madelung sum, assuming that the icons are repeatedperiodically over the in�nite plane with a compensating homogeneous background.The icon with the lowest energy is a fragment of the crystal. In order to study quantummelting it is necessary to have the size of the cluster commensurate with the primitivevectors of the WC. In this case the periodic continuation does not destroy the crystallineorder.As we show below, the icon which corresponds to the lowest excited state plays crucialrole in quantum melting. We denote the lowest excitation energy at J = 0 as �. Itappears to be a general statement, that in a large enough cluster � corresponds to theenergy of the lowest point defect in the WC (e.g., Fig. 3.1b). Indeed, the energy of
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(a)

(b)

(c)

    1E = -16.5474        2E = -16.1031        3E = -16.1026        4E = -16.0889        5E = -15.9715    

    1E = 0.063465     2E = 0.108309        3E = 0.108311        4E = 0.116952        5E = 0.116953    

    1E = -4.75547        2E = -4.71853        3E = -4.71163        4E = -4.67469        5E = -4.65674    

Figure 3.1. Icons with lowest energies for (a) � = 1=2, Coulomb interaction, (b) � = 1=2,short-range interaction, and (c) � = 1=6 Coulomb interaction.such defect remains �nite in large clusters, whereas the energy of any extended defect,like dislocation, increases linearly with the cluster size. Thus, at J = 0 the excitationspectrum of the system has a gap equal to the energy necessary to create a single pointdefect.One can see from Fig. 1 that this is the case for short-range interaction, but not for theCoulomb interaction. For the Coulomb interaction at � = 1=2 the point-defect appearsonly as the �fth icon in the cluster 4� 6. At � = 1=6 the icons shown in Fig. 3.1 do notcontain a point defect at all.We have studied thoroughly the low-energy spectrum for Coulomb interaction at J =0. We analyzed square clusters with di�erent sizes L and �lling factors 1/2, 1/3, 1/4,and 1/6 using classical Monte-Carlo technique. The results are presented in Fig. 3.2. At� = 1=3 and 1/6 new low-energy types of dislocations appear with an increasing clustersize. These dislocations are restricted by the periodic conditions in smaller clusters. Asa result, � decreases with size for small clusters. However, for large enough clusters new
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Figure 3.2. Size dependence of the lowest excitation energy at J = 0 for di�erent �llingfactors. The saturation occurs at such size when the point defect becomes the lowestexcitation.dislocations do not appear so that � does not decrease. For � = 1=2 and 1/3 the pointdefect becomes the lowest excited state starting with the square sizes 6 � 6 and 9 � 9respectively. For � = 1=4 and 1=6 we are unable to �nd this size. However, the increaseof � with L assures that the point defect should �nally become the lowest excited statestarting with some large enough cluster.3.2 Quasimomentum representationThe Hamiltonian Eq. 1.1 is translationally invariant. For each icon � there are m�di�erent icons that can be obtained from it by various translations. These icons arecombined to get the wave function with total quasimomentum P:



21	�P = 1pm� Xr exp(iPr)Tr	�: (3.1)The summation is performed over m� translations Tr.An important point is that the icons with periodic structures generate a smallernumber of di�erent functions 	�P. The number of allowed P generated by each iconis equal to m�. In particular, for the icon 	0 of a WC with one electron per primitivecell, one has m0 = 1=�. The allowed values of P can be determined from the conditions(�1)Qj exp(iPlj) = 1: (3.2)Here lj are the primitive vectors of the WC, and Qj are the numbers of fermionictransmutations necessary for translations on these vectors. These conditions can beeasily understood. If translation on a vector lj is applied to Eq. (2), the right-hand sideacquires a factor (�1)Qj , whereas for a function with given P this factor must be equalto exp(iPlj). If Qj are even for both lj , the allowed P form the reciprocal lattice of theWC. However, in the case when one or both of Qj are odd, the lattice is shifted by �in the corresponding directions. In such case P = 0 is forbidden. The complete set ofm� nontrivial values of P can be obtained by restricting P to the �rst Brillouin zone ofthe background lattice. One WC is represented by a number of icons obtained from eachother by the point-group transformations of the background lattice. The total number ofallowed values of P for the WC is the property of the WC and does not depend on thesize and the shape of the cluster. On the contrary, an icon representing a point defect ina WC generates all vectors P; their total number is M .3.3 General remarksThe following results can be obtained directly using the perturbation theory withrespect to J : (i) the ground state and the lowest excited states have a common largedown shift that is proportional to J2 and to the total number of particles N ; (ii) theground state splitting appears in the N -th order and it is proportional to JN ; (iii) the
ux dependence of the ground state for the 
ux in x-direction appears in the Lx-th orderand it is proportional to JLx in 2D case. In the 1D case the 
ux dependence appears inthe N -th order and it is also proportional to JN .At small J there is a gap in the spectrum since a �nite energy is required to createa point defect in the WC. The states originating from the WC icon do not belong to



22the continuous spectrum since their number remains �nite in a macroscopic system. Thestates originating from an icon with point defect in WC form a band.One can imagine two di�erent scenario of the transition. The simplest one is the�rst-order phase transition. It occurs if the branch originated from the point-defect iconcrosses the ground state at J = Jc. This may happen because the energy of the bottomof the point-defect band is going down with increasing J and can overcome the Coulombenergy of the point defect existing at J = 0. The crossing is possible if the defect branchhas P di�erent from all vectors of the WC. Since the point defect may have all P, theexcitation spectrum of the large system will become continuous at J > Jc. Then the newstate should be a normal metal.In the second scenario the ground state eigenvector originated from the WC iconhas an avoided crossing with defect states of the same P. The ground state obtains alarge admixture of the defect states, looses the structural long range order and becomesdelocalized in terms of the persistent current. No level crossing occurs in this scenario, sothe transition is not of the �rst-order transition. In all computational results that followwe observed the second scenario.



CHAPTER 4RESULTS OF 2D COMPUTATIONSFig. 4.1a,b show the result of diagonalization for cluster 4�6 with 12 electrons for thelong-range Coulomb interaction (a) and for the screened interaction (b) with rs = 0:25.The last case can be considered as a short-range interaction. The total energy E is shownas a function of J . The ground state energy is taken as a reference point for E. Hereand below, the unit of energy is the Coulomb interaction energy for nearest neighbors.At J = 0 the values of E coincide with the energies of the icons shown in Fig. 3.1. Thezero-J gap � in the Coulomb case is almost exactly 10 times larger than in the shortrange case (see Fig. 3.1a,b).
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Figure 4.1. Low-energy part of the spectrum for the cluster 4 � 6 at � = 1=2 for (a)Coulomb interaction and (b) short-range interaction. The numbers (nx; ny) denote thecomponents of quasimomentum P = (2�nx=Lx; 2�ny=Ly). The ground-state energy istaken as a reference point.



24At large J the energy E is linear in J . Thus, we can conclude that with increasing Jin this interval we go all the way from classical icons to free fermions. The ground state isalmost degenerate at small J and it splits into two states with increasing J . As we havediscussed above, this is a manifestation of the structural transition, which is the quantummelting of the WC. The quasimomenta of these two states are those generated by theWC icon, P = (0; �) and (�; 0). In Fig. 4.1a,b they are denoted as (0,3) and (2,0), where(nx; ny) stands for quasimomentum with projections Px = 2�nx=Lx, Py = 2�ny=Ly. Theother branches are the bands of defects.Fig. 4.2a,b show 
ux sensitivity �E = jE(�) � E(0)j, computed for the states withlowest energy for both P = (0; 3) and (2,0), and the energy splitting between these states.In accordance with perturbation theory (see Sec. 3.3), the 
ux sensitivity at small J obeysthe laws J4 and J6 for the direction of the vector potential along the short and long sidesof the cluster respectively. The splitting is roughly proportional to J12. At large J the
ux sensitivity is linear in J and coincides with the free-fermion value. Note that for free
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Figure 4.2. Flux sensitivity for di�erent directions of vector potential and theground-state splitting as a function of J for (a) Coulomb interaction and (b) short-rangeinteraction. The value Jc = 0:02 is assumed. (b) A comparison of the results for di�erentcluster sizes. No signi�cant size dependence of Jc is observed.



25fermions at � = 1=2 the 
ux sensitivity �E is size independent for large clusters, while itdepends on the aspect ratio (see Chapter 3).The data for �E and splitting imply that the structural transition and insulator-metaltransition both occur between J = 0:2 and 0.3 for the Coulomb interaction, and between0.02 and 0.03 for the short range interaction.Comparison of Figs. 4.2a and 4.2b shows that the dependencies �E(J) for the Coulomband the short-range potential are almost indistinguishable if all the energy scales for oneof them are adjusted 10 times. This factor is just the ratio of gaps � for these two cases.Thus, we come to a conclusion that the transition point is determined by the value of �and is almost independent of the type of interaction potential. The same applies to thegeneral structure of the low-energy spectrum of the system in the transition region as canbe seen from comparison of Figs. 4.1a and 4.1b.Fig. 4.1 suggests the following mechanism of the transition. The width of the bandof the lowest point defect in the WC increases with J such that its lowest edge comesclose to the energy of the ground state[30]. Strong mixing between the crystalline anddefect states occurs at this point. This simple picture implies that critical value of Jis determined by the energy � of the lowest defect at J = 0. Now we can propose theempirical rule for Jc: Jc = �� (4.1)where � is some number. This number may depend on the type of the host lattice and�lling factor. However, in all cases we have studied it is between 0.4 and 0.8. Say, in thecase � = 1=2 we have 0:45 < � < 0:68.Fig. 4.3a,b shows the data for � = 1=6 and Coulomb interaction. Fig. 4.3a looks morecomplicated than Fig. 4.1a,b. The WC for this case is shown in the �rst icon in Fig. 3.1c.There exist four such WC that can be obtained from each other by point-symmetryoperations. Each WC generates six di�erent values of P. Thus, at small J the groundstate of the system is degenerate 24 times. Note that the multiplicity is large; however itstill remains �nite in the in�nitely large system, where it is always equal to 24.The primitive vectors of the WC can not be obtained from each other by any symmetryoperation on the host lattice. This means that the WC phase belongs to a reducible rep-resentation of the symmetry group of the host lattice. Following Landau and Lifshitz[31],the symmetry reduction in the second-order phase transition should be such that the
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Figure 4.3. Computational results of the cluster 6 � 6(a) the low-energy part of thespectrum and (b) the 
ux sensitivity for di�erent P and directions of 
ux for the cluster6 � 6 at � = 1=6. The numbers (nx; ny) denote the components of quasimomentumP = (2�nx=Lx; 2�ny=Ly). The reference point is taken to be A + BJ2, where A isthe energy of the WC at J = 0, and B = 177 is the exact J2 term as obtained fromperturbation theory.low-symmetry phase belongs to an irreducible representation of the symmetry group ofthe high-symmetry phase. We conclude that the single second order phase transitionis forbidden in this case. However, it can occur as a series of the transitions, eachreducing the symmetry one step further. In fact, Fig. 4.3a suggests that there are severaltransitions. We think that each splitting of the energy levels generated by the WC iconmanifests a structural transition. The cluster size 6 � 6 is too small to distinguish thecritical J for each of these transitions. We can only conclude that they all occur in theregion 0:02 < J < 0:03.The metal insulator transition as seen in Fig. 4.3b also occurs in the same region of J .Taking into account the value � = 0:037 for the cluster 6�6 we see that the parameter �in Eq. 4.1 is about � � 0:5{0.8. Note that for the pure Coulomb interaction the systemswith � = 1=2 and 1/6 di�er in both � and Jc by a factor of 10, whereas the ratio �=Jcis almost the same.The proposed mechanism of the transition can be illustrated by the dependence E(P)



27at given J . Unfortunately, in 2D case the number of discreet values of P along any line inthe �rst Brillouin zone is small even for the largest 2D system we study. However, suchdependence is well pronounced in 1D. We discuss it in Sec. 4.1.Now we study the size dependence of Jc at � = 1=2. As mentioned in Sec. 3.1, inthe Coulomb case the gap � depends on the size of the cluster for small clusters. Toavoid this di�culty we consider only the short-range potential, where such dependence isabsent. To choose the size and a shape of the cluster we should keep in mind the conditionof commensurability of the WC, mentioned in Sec. 3.1. Since we can study clusters upto 16 particles this condition restricts our options to clusters 4 � 4, 4 � 6, and 4 � 8 for� = 1=2.The low-energy spectrum for the cluster 4 � 4 is shown in Fig. 4.3a. In this casethe WC icon generates quasimomenta P = (0; 0) and (�; �). The 
ux sensitivity andthe ground state splitting are shown in Fig. 4.3b. The transition point is again betweenJ = 0:02 and 0.03. The ground state splitting for 4 � 8 is shown also in Fig. 4.2b. Itis close to the splitting for 4 � 4 in the transition region. Thus, our data do not showany pronounced systematical size dependence of the transition point for the short rangeinteraction at � = 1=2.In the case of the long-range potential the gap � may be a strong function of size (seeFig. 3.2) and one should expect a large size e�ect for relatively small clusters. The onlypractical way we can propose to estimate the transition point for an in�nite crystal isto calculate the energy � of the point defect in such crystal and rely upon the criterionEq. 4.1. Say, for � = 1=2 we get � = 0:61 (see Fig. 3.2) resulting in Jc between 0.28and 0.41 if we take 0:45 < � < 0:68. Note that to get this number from quantumcomputations one should consider at least 6 � 6 cluster with 18 electrons because thepoint defect becomes the lowest excited state starting from this cluster size (see Fig. 3.2).Finally, we consider the gap between the split ground state and excited states thatbelong to the defect band. This gap is clearly seen in Figs. 4.1a,b, 4.3a, and 4.4. At largeJ the branches have a form of beams with di�erent slopes. These slopes de�nitely comefrom the con�nement quantization. The large number of states in each beam re
ectshigh degenracy of the free-fermion ground state at � = 1=2 in the square geometry. Say,in Fig. 4.4 all lines that are horizontal at large J are the state that are degenerate inthe free fermion limit. The splitting of these states is the result of interaction. The gapbetween the split ground state and the bunch of the states in the same beam can be



28

J
0 0.01 0.02 0.03 0.04

0

0.02

0.04

0.06

0.08

0.1

E

(0,0)
(0,1)
(0,2)

(1,1)
(1,2)
(2,2)

P = (0,0), (0,2), (1,1), (2,2)

4x8, 16e

(2,2)

(0,0)

Figure 4.4. The low-energy part of the spectrum for the clusters 4 � 4 and 4 � 8 at� = 1=2. The ground-state energy is used as a reference point. The numbers (nx; ny)denote the components of quasimomentum P = (2�nx=Lx; 2�ny=Ly). The data for 4� 8cluster are presented only for P = (0; 0) (dots) and P = (�; �) (circles).easily calculated in the mesoscopic region of large J , where 4�2=L2 � 1=L. The pictureof beams is valid in the mesoscopic limit and does not imply the existence of a gap atlarge J in the macroscopic system.On the other hand, the gap � that appears at J = 0 is the energy of point defectand it has a nonzero limit in macroscopic system. Thus, an important question appears;whether or not the gap has a nonzero limit right after the insulator-metal transition. Thenonzero gap would mean that the state after the transition is superconducting.The gap in the transition region is a result of the avoided crossing of the groundstate and the defect branch with the same quasimomentum. We have made a lot ofcomputational e�orts in this direction but the results are still inconclusive. Our bestachievement is shown in Fig. 4.4 where we compare the results for 4 � 4 and 4 � 8



29clusters. The con�nement quantization would prescribe the doubling of the gap. Wehave found that the gap for the 4� 8 cluster is less than for 4� 4 cluster but the ratio issigni�cantly less than 2.



CHAPTER 5RESULTS OF 1D COMPUTATIONSIn this section we would like to check the above picture of the quantum melting in1D case. The advantage of 1D case is that the size e�ect can be strongly reduced for thesame number of particles.5.1 1D Coulomb problemWe study the Hamiltonian Eq. 1.1 at �lling factor � = 1=2 and V (i � j) = 1=ji � jj.In 1D we switch from the homogeneous background to the chain with �1=2 charges forthe empty and occupied sites respectively.The 1D Coulomb WC at J = 0 has a structure ����, where � stands for an occupiedand � stands for an empty site. The point defect with the lowest energy is a shift of oneelectron to the nearest site. It is easy to show that its energy is � = 2 ln 2 � 1=0.386.Fig. 5.1 shows the 
ux sensitivity vs. J for di�erent system sizes L. An extrapolationto 1=L!1 shown in the inset gives a rather wide interval for Jc between 0.17 and 0.3.This gives for � in Eq. 4.1 the interval 0:44 < � < 0:77. The reason of such a largeuncertainity is discussed in the next subsection.In 1D the picture of the transition can be illustrated by the dependence E(P ) at givenJ . Fig. 5.2 shows the few lowest eigenvalues for each quantized value of P for a systemof L = 28 sites with N = 14 particles. Note that the spectrum has nontrivial symmetryaround the points P = ��=2. The states with total quasimomenta P , � � P , �P , andP � � are degenerate. This is a general statement for 1D systems with the HamiltonianEq. 1.1 for even N at � = 1=2. The states with quasimomenta P and � � P can beobtained from each other by electron-hole transformation ayp ! ap+�.For even N the WC icon generates two states with quasimomenta P = ��=2, whichare degenerate at all J . As one can see form Fig. 5.2, at J = 0:05 these states areseparated by a gap from the continuum of states, generated by the icon of the pointdefect. At J = 0:1 the defect band becomes wider and the gap decreases as a result.



31However, the lowest eigenvalue at P = �=2 is still a separated point, whereas the secondeigenvalue belongs to the defect band. At this point an avoided crossing starts to developand the width of the gap remains almost unchanged from J = 0:1 to J = 0:2. In thelater case, the lowest eigenvalue is no longer a separated point, but rather can be ascribedto the band. At J = 0:3 it becomes absolutely clear that the lowest eigenvalue belongsto the continuum spectrum. Finally, at J = 1 the picture is similar to that for freefermions with the fermi momentum pF = �=2 and with the lowest branch Emin(P ) closeto J j cos(P )j.Thus, Fig. 5.2 provides a nice illustration to the mechanism of the quantum meltingdescribed in Chapter 3. It shows that the band of the lowest defect plays crucial role inthis transition. We think that a similar picture is valid in the 2D case. We do not present
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34III, which correspond to the melting due to the di�erent types of defects.Fig. 5.3b shows the results of numerical computation of L�E=J as a function of J at�xed V1 and V2 for a system of 14 electrons. The data for smaller sizes are not shown.However, they have been used to �nd the critical value Jc by extrapolation to 1=L! 0. At(V1; V2) equal to (1,0), (0,1), and (1,1) our criterion predicts the transition at Jc = 0:5; at(4,1) it predicts Jc = 1. These values are indicated by the points a, b, c, and d in Fig. 5.3a,and by arrows in Fig. 5.3b. The value Jc = 0:5 is exact for the point (1; 0)[11, 12, 13]. Inthis case the result of extrapolation gives predicted values for the �rst three points witha 15% accuracy.1 For point (4,1) we have Jc = 1:2 � 0:1. Thus, we may conclude thatEq. (4.1) works very well in the region where � is of the order of V1 and V2.The most important statement suggested by the proposed phase diagram in Fig. 5.3ais a prediction of metallic region between the solid lines which extends in�nitely forarbitrarily large V1 and V2 close to the line � = 2V2 � V1 = 0. Consider the curves inFig. 5.3b corresponding to (V1; V2) = (1; 0:48) and (1; 0:52). Now with decreasing J weare moving almost along the line � = 0 in Fig. 5.3a. In the �rst case we deviate a littletowards the Crystal 1, and in the second case towards the Crystal 2. Both lines intersectthe corresponding phase boundaries at large V1, V2, predicting Jc = 0:02 in both cases.One can see in Fig. 5.3b that this prediction is basically ful�lled in the sense that theexponential dependence on J disappears at this point. For J > Jc the system, however,does not look like an ordinary metal, where L�E should be size independent. In fact, wehave observed a weak dependence of L�E on L in a wide range of J between J = Jc andJ � 0:4.Fig. 5.3b also shows �E for (V1; V2) = (1; 0:50). Now with decreasing J we are movingexactly along the line � = 0. In this case the exponential transition to the dielectricphase is absent for arbitrarily small J and for the system size under study, as it followsfrom our phase diagram Fig. 5.3a. However, there is some size dependence of L�E alongthe line � = 0 in the region J � 1. It can be described as �E � 1=L� with � > 1.Thus, it is not a regular 1D metal where � = 1. In fact, the numerical data can also beconsistent with the exponential size dependence �E / exp(�L=�) with anomalously largecorrelation length �.1We claim such a high accuracy for the result of extrapolation because the size dependence looks verysimilar to the case (V1; V2)=(1,0), where exact Jc is known. In the Coulomb case the extrapolation ismore uncertain.



35Now we study more carefully the close vicinity of the line � = 0 far from the origin. Inthe region �� V1; V2 the spectrum of energies at J = 0 has two scales. The large scaleis determined by V1 and V2, whereas the second scale is j�j, that is the energy necessaryto produce a defect. When � = J = 0 the ground state is macroscopically degenerate.Below we consider a limit V1; V2 ! 1, J and � being �nite. In this limit the sizeof the Hilbert space can be greatly reduced. Only the states which are degenerate at� = J = 0 need to be taken into account. These states are such that neither threeelectrons nor three holes occupy adjacent sites.The reduction of the Hilbert space size is from CL=2L to approximately fL�2, where fndenote the Fibonacci numbers, de�ned by fn = fn�1+ fn�2, f0 = f1 = 1. At large n onehas[34] fn � ((1 +p5)=2)n+1=p5.With this reduction we can increase L up to 40 (f39 = :63 � 108). Fig. 5.4a shows�EL=J as a function of �=2J obtained for di�erent L. The maximum occurs not at� = 0, as can be expected from naive consideration, but at �=2J � �0:6. Accurate sizeextrapolation shown in Fig. 5.4b demonstrates that at this point �EL=J stays �nite as Lgoes to in�nity. Thus, the system at � � 1:2J is a normal metal. The 
ux sensitivity inL!1 limit is less than the value � for free fermions and is equal L�E=J � 2:5. In thephase diagram Fig. 5.3a the \magic" metallic line � = 1:2J is shown with a dashed line.This line appears, obviously, as a result of quantum mixture of the two di�erent Wignercrystals.Fig. 5.4a shows also the energy per particle as a function of �=2J obtained in the samelimit. We have not found any singularity in the energy in the region of interest. The gapbetween the ground and the lowest excited states with the same total quasimomentum atthe magic metallic line scales to zero linearly in 1=L, as shown in the inset in Fig. 5.4a.Note that the WC on the lattice has a �nite gap.The inset in Fig. 5.4b shows the reciprocal correlation length 1=� = �d ln(L�E)=dLas a function of �=2J as obtained from the slopes of the curves in Fig. 5.4b at largestL. Note that the condition � < L corresponds to 1=� > 0:25. Thus, we have a realexponential behavior for �3 < �=2J < 2. At large negative values of �=2J the groundstate of the system is close to the Crystal 2 with a small admixture of defects whichare fragments of the Crystal 1. At large and positive �=2J one obtains the oppositepicture. In the intermediate region the ground state is a mixture of these two crystals.If we extrapolate 1=� in each of the exponential regions, we �nd that it turns into zero
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CHAPTER 6CONCLUSIONSWe have performed a numerical study of the quantum melting transition of 1D and2D fermionic systems in a lattice model with Hamiltonian Eq. 1.1. The transition occursat some critical value of the hopping amplitude J . The structural transition has beendetected by studying the splitting of the ground state, degenerate in the crystalline phase.Simultaneously we studied the insulator-metal transition, detecting it by computing thesensitivity of the ground-state energy to the boundary conditions.We have found out that the quantum melting transition on a lattice is not of the �rstorder. The driving force of the transition is the mixing of the ground-state wave functionwith the wave function of the point defect in the Wigner crystal. At �nite J the pointdefect forms a band. The melting occurs at such J that the lowest edge of the bandcomes close to the energy of the ground state. Strong mixing between the crystalline anddefect states occurs at this point. This simple picture implies that the critical value of Jis determined by the energy � of the point defect at J = 0. The empirical criterion wehave proposed is Jc = ��, where � is some number.In the 2D case we have studied the systems with Coulomb and short-range interactionpotentials at di�erent �lling factors. We have shown that the empirical criterion worksvery well in all cases studied.We have shown that the insulator-metal transition occurs simultaneously with thestructural transitionWe have considered also a 1D lattice model with the nearest-neighbor interaction V1and next-nearest neighbor interaction V2 at �lling factor 1/2. This model is interestingbecause the gap � can be varied in a large interval and can be close to zero at �nite V1and V2.We have shown that our criterion provides a good description of the phase diagram ofquantum melting in the [V1; V2]-model in the regions where the mixing of two competing



38crystals is not important. In the region of strong mixing we have found an interestingmetallic phase in a strongly interacting system.
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