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Polarization Forces in Water Deduced from Single Molecule Data
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The intermolecular electrostatic and polarization interactions in water are determined using a minimal
atomic multipole model constructed with distributed polarizabilities. Hydrogen bonding and other
properties of water-water interactions are reproduced by only three multipoles �H, �O, and �O and
two polarizabilities �O and �H, which characterize a single water molecule and are deduced from single-
molecule data.
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FIG. 1 (color online). Geometry of a single water molecule.
Vectors n1 and n2 point in the direction of the lone pairs on the
oxygen. The inset shows the effect of varying 
0 on the accuracy
[5] of (1). �H, �O, and �O are reoptimized for every 
0.
Understanding electrostatic and polarization forces is
vital in many molecular systems such as molecular clus-
ters, liquids, or solids, specifically those containing polar
and polarizable molecules. Polarization effects in water are
particularly strong, as can be judged by the enhancement of
the molecular dipole from 1.855 D for an isolated molecule
to 2.6–3.2 D in condensed state [1,2]. Water is a very
fundamental substance [3]. It is a fascinating object to
study because of its singular properties, because of its
significance in biological systems, and because it is a
classic example of hydrogen bonding [4]. Hydrogen bond-
ing, which itself is one of the key elements in the function-
ing of life, is largely an electrostatic and polarization
effect. Unfortunately, no commonly accepted model de-
scribes it simply and accurately at the same time. Here we
show that the application of recent rules for minimal
atomic multipoles [5] combined with the notion of distrib-
uted polarizabilities leads straightforwardly, without fur-
ther intervention, to a very transparent model for
electrostatic and polarization forces in water.

The intermolecular potential for water has been exten-
sively studied, with about 150 models introduced since the
1930s, indicating difficulties in this area [6]. Recent accu-
rate parametrizations involving several tens of parameters
are available, based on tuning to rich vibration-rotation-
tunneling (VRT) spectra [7,8], to high-level quantum-
chemical calculations [9], or both [10]. Some models are
based on molecular multipole moments and require high-
order multipoles [11]. Following the seminal work by
Rahman and Stillinger [12], many empirical models in-
volve distributed charges [13–23]. Most of the force fields
use static charges, thus ignoring or averaging polarization
effects, while other models incorporate polarizabilities
explicitly [16–23]. The work [17] first distributed the
molecular polarizability over atomic sites.

It has recently been recognized that hydrogens need not
be assigned charges in distributed-charge models [5]. The
hydrogen’s sole electron participates in the chemical bond
and is not centered at the proton. Therefore, hydrogen is
best described by an atomic dipole �H placed on the proton
and directed along the bond. Assigning both a charge and a
05=94(1)=013204(4)$23.00 01320
dipole causes redundancy and leads to unphysical results.
This rule is an integral part of the minimal atomic multi-
pole expansion (MAME) [5], which eliminates the redun-
dancies by a careful choice of the minimal set of atomic
multipoles, based on the Lewis structure of the molecule.

MAME rules lead to the following expression for the
electrostatic potential of a single water molecule:

��r���H
�r�r1� �r1=l
jr�r1j3

��H
�r�r2� �r2=l
jr�r2j3

��O
r �n
r3

��O
2r2�3�r �n1�

2�3�r �n2�
2

2r5
: (1)

Since protons have no charge, neutrality allows no charge
on the oxygen either. The dipole �O and quadrupole �O
describe the two lone pairs on the oxygen [5]. The origin is
at the oxygen, r1;2 are the positions of the protons, r1;2 � l,
n � �r1 � r2�=jr1 � r2j is the unit vector along the sym-
metry axis, and n1;2 are unit vectors in the directions of
lone pairs (Fig. 1). The experimental geometry has l �
0:9572 
A and a nearly tetrahedral bond angle 
 � 104:52�
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FIG. 2 (color online). Coulomb � induction energy EP��a; �d�
for the water dimer. ROO � 2:977 
A, and one of the angles is
fixed at the minimum value as the other one is varied. EP is
calculated for the defined system of atomic multipoles and
polarizabilities in the standard manner [25], by computing the
fields of all multipoles of one molecule exerted on the multipoles
of another molecule, and solving for self-consistency.
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between r1 and r2 [24]. We take n1 and n2 to be at the
tetrahedral angle 
0 � 109:47� [19]. Significant deviation
from this value leads to a dramatic deterioration of the
accuracy of Eq. (1), as seen in the inset.

Our goal is to extend the static model to describe the
field induced by a polarized molecule subject to external
fields. In doing so we again keep only the minimal set of
multipoles to avoid redundancies. The charge redistribu-
tion part of the molecular polarizability [25] (‘‘FQ’’ or
‘‘fluctuating charge’’ is another name for the same concept
[18]) vanishes for water due to the absence of charged sites.
Thus we assign polarizabilities to individual nuclei in such
a way as to reproduce the experimental molecular polar-
izability. The smallest component is �yy � 1:4146�3� 
A3

normal to the molecular plane, the next is �zz �

1:4679�13� 
A3 along the dipole moment, and the largest
is �xx � 1:5284�13� 
A3 in the longest dimension [26].

Atomic polarizabilities reflect the local atomic environ-
ments and need not necessarily be isotropic. The tetrahe-
dral coordination of oxygen suggests assigning it an
isotropic polarizability �O. For hydrogens the polarizabil-
ity �H along the OH bond may differ from the polariz-
ability �? normal to it. To deduce �O, �H, and �? we use
them to express the molecular polarizability,

�xx � �O � 2�Hsin
2
=2� 2�?cos

2
=2;

�yy � �O � 2�?;

�zz � �O � 2�Hcos
2
=2� 2�?sin

2
=2: (2)

In a surprise twist, the determinant of this linear system is
identically zero. Equations (2) are therefore dependent and
possess a solution only if the quantity

�xxcos
2
=2� �yy�2sin

2
=2� 1� � �zzsin
2
=2 (3)

is zero. Thus, the model is adequate if the above relation
holds between the molecular polarizability components.
Substituting the experimental values into (3) we get
0:0093 
A3, which is indeed close to zero. Two independent
equations suggest that one of the atomic polarizabilities
can be safely omitted. The natural choice is to set �? � 0,
implying that the dipole moments on protons can change
their value, but not direction. Solving (2) we get

�O � �yy � 1:4146 
A3;

�H � ��xx � �zz�=2� �yy � 0:0836 
A3:
(4)

Thus, the bulk of molecular polarizability comes from the
oxygen, which is consistent with its atomic size, while the
small polarizabilities on the protons account for the (small)
anisotropy of the molecular polarizability tensor.

Three gas-phase multipoles from a density functional
calculation, �H � 0:675 D, �O � 1:033 D, and �O �

1:260 D 
A [5] result in the molecular dipole � �

1:854 D and the quadrupole components � � �xx �

�yy � 4:973 D 
A and �zz � 0:142 D 
A [27]. These
01320
should be compared to the experimental values [28,29]
� � 1:8546�6� D, � � 5:126�25� D 
A, and �zz �

0:113�27� D 
A.
We again adjust the three atomic multipoles to satisfy

the three experimental values precisely to avoid any com-
putational input. The molecular dipole and quadrupole are
expressed in terms of the atomic multipoles as

� � �O � 2�H cos
=2;

� � 6l�Hsin
2
=2� 3�Osin2
0=2;

�zz � 2l�H�3cos
2
=2� 1� � �O�3cos

2
0=2� 1�:

(5)

In practice, we face here an almost identical problem, in
that the determinant of (5) is small. It becomes zero when
the ideal tetrahedral angle is substituted for 
. A relation
similar to (3) in this case reads simply �zz � 0. Actual �zz
is indeed small, but not zero, and 
 deviates noticeably
from 109:47�. Nevertheless, the smallness of the determi-
nant indicates that the data, which have finite accuracy, can
be satisfied by a range of atomic multipoles, and so the
third equation in (5) cannot be used reliably.

Thus, we use the first two equations to express �O and
�O in terms of �H, which guarantees the experimental �
and � are reproduced while keeping reasonable �zz. The
density functional theory value �H � 0:675 D yields
�O � 1:029 D and �O � 1:352 D 
A, with �zz �

0:160 D 
A. The model is thus completely defined and read-
ily yields the Coulomb and induction energy EP for the
water dimer, trimer, and larger clusters [25].

Water clusters from dimers on up have been extensively
studied with both experiment [7,30–32] and theory
[7,8,33–35]. The six-dimensional adiabatic energy surface
4-2
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of the dimer has eight equivalent minima [36] split in a
complex fashion by zero-point tunneling motion. The soft-
ness of the pair potential requires care when relating it to
experimental observables [7].

The equilibrium hydrogen-bonded configuration has a
symmetry plane (Fig. 2, inset) and is characterized by the
oxygen-oxygen distance ROO, the donor angle �d, and the
acceptor angle �a. The hydrogen bond forms when the
donor proton points against one of the lone pairs of the
acceptor, �d � 0, �a � 
0=2 � 54:74� in our notation.
The actual angles deviate slightly from these ideal values
and are known with some scatter.

For the experimental geometry we get EP�
�7:046kcal=mol (�29:48 kJ=mol). Adding 1:820 kcal=
mol for the exchange and dispersion energy [VRT(ASP-

W)III [8] value] we get the equilibrium binding energy
De � 5:110 kcal=mol (21:38 kJ=mol). The model also
yields the total dipole moment of the dimer in excellent
agreement with experiment (Table I). The induction con-
tribution alone is about 20% of De and decreases with ROO.

Since EP is only a part of the total interaction, which
also contains exchange and dispersion terms, we fix ROO

and analyze the orientation dependence (Fig. 2). The mini-
mum is achieved at �d � 2:14� and �a � 66:26�, which is
close to, but should not be confused with, the equilibrium
hydrogen-bonded configuration, since other terms may
shift the minimum. Rotation of either the donor by ��d �
�
 or the acceptor by ��a � �
0 produces an alternative
hydrogen-bonded arrangement sketched under the local
minima in Fig. 2.

In order to further assess the quality of the model, we
analyze the energy variation along a path where the ex-
change and dispersion terms vary little. We chose to rotate
the donor by an angle � around the bridging OH bond
(Fig. 2). Only a single proton then changes its position and
stays far from all the nuclei of the acceptor for all �.

Figure 3 shows excellent agreement with all three best
pair potentials. Note the small (<1 kcal=mol) total ampli-
tude of the variation, which is not described by a simple
cos� function. The overall agreement in the full range of �
is better with the ab-initio-based SAPT-5S [9] potential
(inset). However, at small � we get a near coincidence
with the other two curves, VRT(ASP-W)III and SAPT-5ST [10],
TABLE I. Equilibrium binding energy De ( kcal=mol) and
dipole moment �dim (Debye) for water dimer. �dim

? is the
component of �dim normal to the principal axis.

ROO ( 
A) �d �a De �dim �dim
?

SAPT-5S 2.955 6.36� 52.83� 4.858
SAPT-5ST 2.924 6.95� 58.52� 5.026
VRT(ASP-W)III 2.947 1.86� 49.27� 4.948 2.69b

This worka 2.977 0.74� 59.7� 5.110 2.67 0.13
Expt. [29,30] 2.977 0.74� 59.7� 2.67 0.38

aGeometry is fixed at experimental values.
bProjection on the principal axis [7].
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which are both spectroscopically tuned. This is very en-
couraging, assuming the spectroscopic tuning is more sen-
sitive to the region near the equilibrium.

The model also performs well for the displacement of
the donor with respect to the acceptor (lower inset). For
comparison, TIP4P-FQ, a popular polarizable model with
fluctuating charges on the oxygen and hydrogens, gives
softer EP at small distances because it underestimates the
molecular polarizability [18].

Explicit distributed polarizabilities (4) suggest an esti-
mate of the dispersion energy. Because of the fast r�6

decay, the dispersion is dominated by two terms, ED
OO /

�O�O and ED
HO / �H�O. Small �H in the second term is

compensated by the proximity of the bridging hydrogen to
the oxygen of the acceptor. Neglecting dispersion non-
additivity and assuming a universal scaling of the disper-
sion coefficient C6 � z�A�B for A and B species, we get
ED
OO � z�2

O=R
6
OO � 0:99 kcal=mol and ED

HO �
2
3 z�H�O=�ROO � l�6 � 0:40 kcal=mol for a linear hydro-
gen bond. The total ED � 1:39 kcal=mol (5:82 kJ=mol)
can be compared to 1:56 kcal=mol from Fig. 3 of
Ref. [35]. For this crude estimate we used z �
344 kcal=mol value for Ar. The factor of 2

3 accounts for
the anisotropy of �H [37].

Since our model is constructed based solely on monomer
properties, we may speculate that it should describe larger
clusters as well, where the nonpairwise additivity of energy
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FIG. 3 (color online). Energy variation for the water dimer
with rotation of the donor around the bridging OH bond. The
agreement is best with the spectroscopically tuned potentials at
small � and with the ab-initio-based potential overall. The lower
inset compares EP with the Coulomb � induction part of the
VRT(ASP-W)III potential over the donor-acceptor separation along
the O–O line (experimental geometry used).
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is important [9,31]. Such nonadditivity results from self-
consistency of all the induced moments in the cluster [25],
and may be relevant for the cooperativity of hydrogen
bonding in protein secondary structures [38].

It is interesting to apply the present model to larger
clusters and to liquid water, where recent studies employ
polarizable force fields [39–41]. This requires a suitable
parametrization of the exchange repulsion and dispersion
terms. It is particularly appealing to augment the model
with fine-tuning of the repulsion terms to reproduce VRT
spectroscopic features [7].

The MAME approach used here bears similarities with
the works of Stone and others [42–44]. The difference is
that here no attempt is made to reproduce the electronic
density by partitioning the molecular volume into regions
or ‘‘basins.’’ The MAME multipoles are not designed to be
the multipole moments of these regions, but merely to
reproduce the electrostatic potential of the molecule as a
whole. This allows for freedom in the choice of the mini-
mal multipole set that eliminates redundancies [5].

For larger molecules experimental data will not be suf-
ficient to deduce atomic multipoles and polarizabilities,
and the multipoles from the MAME calculation may
have to be used [5]. These values for water are close to
those deduced from experiment, which is encouraging.
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